Cargando…
A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity
The complex feature characteristics and low contrast of cancer lesions, a high degree of inter-class resemblance between malignant and benign lesions, and the presence of various artifacts including hairs make automated melanoma recognition in dermoscopy images quite challenging. To date, various co...
Autores principales: | Montaha, Sidratul, Azam, Sami, Rafid, A. K. M. Rakibul Haque, Islam, Sayma, Ghosh, Pronab, Jonkman, Mirjam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352099/ https://www.ncbi.nlm.nih.gov/pubmed/35925956 http://dx.doi.org/10.1371/journal.pone.0269826 |
Ejemplares similares
-
BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images
por: Montaha, Sidratul, et al.
Publicado: (2021) -
Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases
por: Azam, Sami, et al.
Publicado: (2023) -
MNet-10: A robust shallow convolutional neural network model performing ablation study on medical images assessing the effectiveness of applying optimal data augmentation technique
por: Montaha, Sidratul, et al.
Publicado: (2022) -
An Effective Ensemble Machine Learning Approach to Classify Breast Cancer Based on Feature Selection and Lesion Segmentation Using Preprocessed Mammograms
por: Rafid, A. K. M. Rakibul Haque, et al.
Publicado: (2022) -
An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study
por: Azam, Sami, et al.
Publicado: (2023)