Cargando…
Mechanistic Study of Micro-bubble Fluid Infiltration through the Fractured Medium
[Image: see text] Drilling in depleted reservoirs has many challenges due to the overbalance pressure. Another trouble associated with overbalance drilling is differential sticking and formation damage. Low-density drilling fluid is an advanced method for drilling these depleted reservoirs and pay z...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352216/ https://www.ncbi.nlm.nih.gov/pubmed/35936402 http://dx.doi.org/10.1021/acsomega.2c01951 |
_version_ | 1784762606143143936 |
---|---|
author | Baseli Zadeh, Sina Khamehchi, Ehsan Saber-Samandari, Saeed Alizadeh, Ali |
author_facet | Baseli Zadeh, Sina Khamehchi, Ehsan Saber-Samandari, Saeed Alizadeh, Ali |
author_sort | Baseli Zadeh, Sina |
collection | PubMed |
description | [Image: see text] Drilling in depleted reservoirs has many challenges due to the overbalance pressure. Another trouble associated with overbalance drilling is differential sticking and formation damage. Low-density drilling fluid is an advanced method for drilling these depleted reservoirs and pay zones with different pressures to balance the formation pore pressure and hydrostatic drilling fluid pressure. This study investigated the infiltration of a micro-bubble fluid as an underbalanced drilling method in fractured reservoirs. A novel method has been presented for drilling permeable formations and depleted reservoirs, leading to an impressive reduction in costs, high-tech facilities, and drilling mud invasion. It also reduces mud loss, formation damages, and skin effects during the drilling operation. This paper studied micro-bubble fluid infiltration in a single fracture, and a synthetic metal plug investigated the bridging phenomenon through the fractured medium. Moreover, the effects of fracture size, bubble size, and a pressure differential of fracture ends have been thoroughly analyzed, considering the polymer and surfactant concentrations at reservoir conditions, including the temperature and overburden pressure. In this study, nine experimental tests were designed using the design of experiment, Taguchi method. The results indicated that higher micro-bubble fluid mixing speed values make smaller bubbles with lower blocking ability in fracture (decrease the chance of blocking more than two times). On the other hand, a smaller fracture width increases the probability of bubble bridges in the fracture but is not as crucial as bubble size. As a result, drilling fluid infiltration in fractures and formation damages decreases in the condition of overbalanced drilling pressure differences of about 200 psi. |
format | Online Article Text |
id | pubmed-9352216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93522162022-08-05 Mechanistic Study of Micro-bubble Fluid Infiltration through the Fractured Medium Baseli Zadeh, Sina Khamehchi, Ehsan Saber-Samandari, Saeed Alizadeh, Ali ACS Omega [Image: see text] Drilling in depleted reservoirs has many challenges due to the overbalance pressure. Another trouble associated with overbalance drilling is differential sticking and formation damage. Low-density drilling fluid is an advanced method for drilling these depleted reservoirs and pay zones with different pressures to balance the formation pore pressure and hydrostatic drilling fluid pressure. This study investigated the infiltration of a micro-bubble fluid as an underbalanced drilling method in fractured reservoirs. A novel method has been presented for drilling permeable formations and depleted reservoirs, leading to an impressive reduction in costs, high-tech facilities, and drilling mud invasion. It also reduces mud loss, formation damages, and skin effects during the drilling operation. This paper studied micro-bubble fluid infiltration in a single fracture, and a synthetic metal plug investigated the bridging phenomenon through the fractured medium. Moreover, the effects of fracture size, bubble size, and a pressure differential of fracture ends have been thoroughly analyzed, considering the polymer and surfactant concentrations at reservoir conditions, including the temperature and overburden pressure. In this study, nine experimental tests were designed using the design of experiment, Taguchi method. The results indicated that higher micro-bubble fluid mixing speed values make smaller bubbles with lower blocking ability in fracture (decrease the chance of blocking more than two times). On the other hand, a smaller fracture width increases the probability of bubble bridges in the fracture but is not as crucial as bubble size. As a result, drilling fluid infiltration in fractures and formation damages decreases in the condition of overbalanced drilling pressure differences of about 200 psi. American Chemical Society 2022-07-22 /pmc/articles/PMC9352216/ /pubmed/35936402 http://dx.doi.org/10.1021/acsomega.2c01951 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Baseli Zadeh, Sina Khamehchi, Ehsan Saber-Samandari, Saeed Alizadeh, Ali Mechanistic Study of Micro-bubble Fluid Infiltration through the Fractured Medium |
title | Mechanistic Study
of Micro-bubble Fluid Infiltration
through the Fractured Medium |
title_full | Mechanistic Study
of Micro-bubble Fluid Infiltration
through the Fractured Medium |
title_fullStr | Mechanistic Study
of Micro-bubble Fluid Infiltration
through the Fractured Medium |
title_full_unstemmed | Mechanistic Study
of Micro-bubble Fluid Infiltration
through the Fractured Medium |
title_short | Mechanistic Study
of Micro-bubble Fluid Infiltration
through the Fractured Medium |
title_sort | mechanistic study
of micro-bubble fluid infiltration
through the fractured medium |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352216/ https://www.ncbi.nlm.nih.gov/pubmed/35936402 http://dx.doi.org/10.1021/acsomega.2c01951 |
work_keys_str_mv | AT baselizadehsina mechanisticstudyofmicrobubblefluidinfiltrationthroughthefracturedmedium AT khamehchiehsan mechanisticstudyofmicrobubblefluidinfiltrationthroughthefracturedmedium AT sabersamandarisaeed mechanisticstudyofmicrobubblefluidinfiltrationthroughthefracturedmedium AT alizadehali mechanisticstudyofmicrobubblefluidinfiltrationthroughthefracturedmedium |