Cargando…
A Generative Approach to Materials Discovery, Design, and Optimization
[Image: see text] Despite its potential to transform society, materials research suffers from a major drawback: its long research timeline. Recently, machine-learning techniques have emerged as a viable solution to this drawback and have shown accuracies comparable to other computational techniques...
Autores principales: | Menon, Dhruv, Ranganathan, Raghavan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352221/ https://www.ncbi.nlm.nih.gov/pubmed/35936396 http://dx.doi.org/10.1021/acsomega.2c03264 |
Ejemplares similares
-
Multi-objective Optimization for Materials Discovery via Adaptive Design
por: Gopakumar, Abhijith M., et al.
Publicado: (2018) -
Materials discovery and design: by means of data science and optimal learning
por: Lookman, Turab, et al.
Publicado: (2018) -
Inverse design with deep generative models: next step in materials discovery
por: Lu, Shuaihua, et al.
Publicado: (2022) -
A transfer learning approach for reaction discovery in small data situations using generative model
por: Singh, Sukriti, et al.
Publicado: (2022) -
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
por: Qian, Xiaoning, et al.
Publicado: (2023)