Cargando…
Predicting Lattice Vibrational Frequencies Using Deep Graph Neural Networks
[Image: see text] Lattice vibrational frequencies are related to many important materials properties such as thermal and electrical conductivity as well as superconductivity. However, computational calculation of vibrational frequencies using density functional theory methods is computationally too...
Autores principales: | Nguyen, Nghia, Louis, Steph-Yves V., Wei, Lai, Choudhary, Kamal, Hu, Ming, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352222/ https://www.ncbi.nlm.nih.gov/pubmed/35936410 http://dx.doi.org/10.1021/acsomega.2c02765 |
Ejemplares similares
-
Scalable deeper graph neural networks for high-performance materials property prediction
por: Omee, Sadman Sadeed, et al.
Publicado: (2022) -
Learning to See the Vibration: A Neural Network for Vibration Frequency Prediction
por: Liu, Jiantao, et al.
Publicado: (2018) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Evaluating graph neural networks under graph sampling scenarios
por: Wei, Qiang, et al.
Publicado: (2022) -
Deep Graph Neural Networks for Fast HGCAL Simulation
por: Kansal, Raghav
Publicado: (2019)