Cargando…
Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design
[Image: see text] Matched molecular pairs (MMPs) are nowadays a commonly applied concept in drug design. They are used in many computational tools for structure–activity relationship analysis, biological activity prediction, or optimization of physicochemical properties. However, until now it has no...
Autores principales: | Kwapien, Karolina, Nittinger, Eva, He, Jiazhen, Margreitter, Christian, Voronov, Alexey, Tyrchan, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352238/ https://www.ncbi.nlm.nih.gov/pubmed/35936431 http://dx.doi.org/10.1021/acsomega.2c02738 |
Ejemplares similares
-
Nonadditivity in public and inhouse data: implications for drug design
por: Gogishvili, D., et al.
Publicado: (2021) -
Molecular optimization by capturing chemist’s intuition using deep neural networks
por: He, Jiazhen, et al.
Publicado: (2021) -
DockStream: a docking wrapper to enhance de novo molecular design
por: Guo, Jeff, et al.
Publicado: (2021) -
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification
por: Zhang, Yumeng, et al.
Publicado: (2023) -
Transformer-based molecular optimization beyond matched molecular pairs
por: He, Jiazhen, et al.
Publicado: (2022)