Cargando…

Cu-Doped 1D Hydroxyapatite as a Highly Active Catalyst for the Removal of 4-Nitrophenol and Dyes from Water

[Image: see text] Metallic copper nanoparticle (Cu NP)-doped 1D hydroxyapatite was synthesized using a simple chemical reduction method. To describe the structure and composition of the Cu/HAP nanocomposites, physicochemical techniques such as X-ray diffraction, Fourier transform infrared spectrosco...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Aal, Mohamed Abd, Ali, Hazim M., Ibrahim, Samia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352244/
https://www.ncbi.nlm.nih.gov/pubmed/35936455
http://dx.doi.org/10.1021/acsomega.2c03106
Descripción
Sumario:[Image: see text] Metallic copper nanoparticle (Cu NP)-doped 1D hydroxyapatite was synthesized using a simple chemical reduction method. To describe the structure and composition of the Cu/HAP nanocomposites, physicochemical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma, N(2) adsorption–desorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy were used. The TEM scan of the Cu/HAP nanocomposite revealed a rod-like shape with 308 nm length and 117 nm width on average. The catalytic activity of Cu/HAP nanocomposites for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH(4) has been thoroughly investigated. The 0.7% Cu/HAP nanocomposite was shown to have superior catalytic activity than the other nanocomposites, converting 4-NP to 4-AP in ∼1 min with good recyclability. Moreover, this nanocomposite showed excellent catalytic performance in the organic dye reduction such as Congo red and acriflavine hydrochloride dyes. The high dispersion of Cu NPs on HAP support, the high specific surface area, and the small Cu particles contributed to its remarkable catalytic performance.