Cargando…
Syntheses of Thiophene and Thiazole-Based Building Blocks and Their Utilization in the Syntheses of A-D-A Type Organic Semiconducting Materials with Dithienosilolo Central Unit
[Image: see text] Dithienosilole moiety is an electron donating unit, and it has been applied, for example, as a part of small molecular and polymeric electron donors in high performance organic photovoltaic cells. Herein, we report efficient synthetic routes to two symmetrical, dithienosilolo-centr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352338/ https://www.ncbi.nlm.nih.gov/pubmed/35936481 http://dx.doi.org/10.1021/acsomega.2c02195 |
Sumario: | [Image: see text] Dithienosilole moiety is an electron donating unit, and it has been applied, for example, as a part of small molecular and polymeric electron donors in high performance organic photovoltaic cells. Herein, we report efficient synthetic routes to two symmetrical, dithienosilolo-central-unit-based A-D-A type organic semiconducting materials DTS(Th(2)FBTTh)(2) and DTS(ThFBTTh)(2). Fine-tuned conditions in Suzuki–Miyaura couplings were tested and utilized. The effect of inserting additional hexylthiophene structures symmetrically into the material backbone was investigated, and it was noted that contrary to commonly accepted fact, the distance between electron donor and acceptor seems to play a bigger role in lowering the E(gap) value of the molecule than just extending the length of the conjugated backbone. We searched for precedent cases from the literature, and these are compared to our findings. The optical properties of the materials were characterized with UV–vis spectroscopy. Majority of the intermediate compounds along the way to final products were produced with excellent yields. Our results offer highly efficient routes to many heterocyclic structures but also give new insights into the design of organic semiconducting materials. |
---|