Cargando…
A Novel Multistep Iterative Technique for Models in Medical Sciences with Complex Dynamics
This paper proposes a three-step iterative technique for solving nonlinear equations from medical science. We designed the proposed technique by blending the well-known Newton's method with an existing two-step technique. The method needs only five evaluations per iteration: three for the given...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352491/ https://www.ncbi.nlm.nih.gov/pubmed/35936367 http://dx.doi.org/10.1155/2022/7656451 |
Sumario: | This paper proposes a three-step iterative technique for solving nonlinear equations from medical science. We designed the proposed technique by blending the well-known Newton's method with an existing two-step technique. The method needs only five evaluations per iteration: three for the given function and two for its first derivatives. As a result, the novel approach converges faster than many existing techniques. We investigated several models of applied medical science in both scalar and vector versions, including population growth, blood rheology, and neurophysiology. Finally, some complex-valued polynomials are shown as polynomiographs to visualize the convergence zones. |
---|