Cargando…
Designing rotationally invariant neural networks from PDEs and variational methods
Partial differential equation models and their associated variational energy formulations are often rotationally invariant by design. This ensures that a rotation of the input results in a corresponding rotation of the output, which is desirable in applications such as image analysis. Convolutional...
Autores principales: | Alt, Tobias, Schrader, Karl, Weickert, Joachim, Peter, Pascal, Augustin, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352643/ https://www.ncbi.nlm.nih.gov/pubmed/35941960 http://dx.doi.org/10.1007/s40687-022-00339-x |
Ejemplares similares
-
Connections Between Numerical Algorithms for PDEs and Neural Networks
por: Alt, Tobias, et al.
Publicado: (2022) -
Geometric methods in PDE’s
por: Citti, Giovanna, et al.
Publicado: (2015) -
Rotation equivariant and invariant neural networks for microscopy image analysis
por: Chidester, Benjamin, et al.
Publicado: (2019) -
Random walks on boundary for solving PDEs
por: Sabelfeld, Karl K, et al.
Publicado: (1994) -
Numerical methods for PDEs: state of the art techniques
por: Pietro, Daniele, et al.
Publicado: (2018)