Cargando…

Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter

Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Peter, Martin F., Ruland, Jan A., Depping, Peer, Schneberger, Niels, Severi, Emmanuele, Moecking, Jonas, Gatterdam, Karl, Tindall, Sarah, Durand, Alexandre, Heinz, Veronika, Siebrasse, Jan Peter, Koenig, Paul-Albert, Geyer, Matthias, Ziegler, Christine, Kubitscheck, Ulrich, Thomas, Gavin H., Hagelueken, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352664/
https://www.ncbi.nlm.nih.gov/pubmed/35927235
http://dx.doi.org/10.1038/s41467-022-31907-y
_version_ 1784762698436706304
author Peter, Martin F.
Ruland, Jan A.
Depping, Peer
Schneberger, Niels
Severi, Emmanuele
Moecking, Jonas
Gatterdam, Karl
Tindall, Sarah
Durand, Alexandre
Heinz, Veronika
Siebrasse, Jan Peter
Koenig, Paul-Albert
Geyer, Matthias
Ziegler, Christine
Kubitscheck, Ulrich
Thomas, Gavin H.
Hagelueken, Gregor
author_facet Peter, Martin F.
Ruland, Jan A.
Depping, Peer
Schneberger, Niels
Severi, Emmanuele
Moecking, Jonas
Gatterdam, Karl
Tindall, Sarah
Durand, Alexandre
Heinz, Veronika
Siebrasse, Jan Peter
Koenig, Paul-Albert
Geyer, Matthias
Ziegler, Christine
Kubitscheck, Ulrich
Thomas, Gavin H.
Hagelueken, Gregor
author_sort Peter, Martin F.
collection PubMed
description Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.
format Online
Article
Text
id pubmed-9352664
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93526642022-08-06 Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter Peter, Martin F. Ruland, Jan A. Depping, Peer Schneberger, Niels Severi, Emmanuele Moecking, Jonas Gatterdam, Karl Tindall, Sarah Durand, Alexandre Heinz, Veronika Siebrasse, Jan Peter Koenig, Paul-Albert Geyer, Matthias Ziegler, Christine Kubitscheck, Ulrich Thomas, Gavin H. Hagelueken, Gregor Nat Commun Article Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo. Nature Publishing Group UK 2022-08-04 /pmc/articles/PMC9352664/ /pubmed/35927235 http://dx.doi.org/10.1038/s41467-022-31907-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Peter, Martin F.
Ruland, Jan A.
Depping, Peer
Schneberger, Niels
Severi, Emmanuele
Moecking, Jonas
Gatterdam, Karl
Tindall, Sarah
Durand, Alexandre
Heinz, Veronika
Siebrasse, Jan Peter
Koenig, Paul-Albert
Geyer, Matthias
Ziegler, Christine
Kubitscheck, Ulrich
Thomas, Gavin H.
Hagelueken, Gregor
Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title_full Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title_fullStr Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title_full_unstemmed Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title_short Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter
title_sort structural and mechanistic analysis of a tripartite atp-independent periplasmic trap transporter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352664/
https://www.ncbi.nlm.nih.gov/pubmed/35927235
http://dx.doi.org/10.1038/s41467-022-31907-y
work_keys_str_mv AT petermartinf structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT rulandjana structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT deppingpeer structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT schnebergerniels structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT severiemmanuele structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT moeckingjonas structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT gatterdamkarl structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT tindallsarah structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT durandalexandre structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT heinzveronika structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT siebrassejanpeter structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT koenigpaulalbert structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT geyermatthias structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT zieglerchristine structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT kubitscheckulrich structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT thomasgavinh structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter
AT hageluekengregor structuralandmechanisticanalysisofatripartiteatpindependentperiplasmictraptransporter