Cargando…

A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4

Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadée, Christoph, Hagler, Lauren D., Becker, Winston R., Jarmoskaite, Inga, Vaidyanathan, Pavanapuresan P., Denny, Sarah K., Greenleaf, William J., Herschlag, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352680/
https://www.ncbi.nlm.nih.gov/pubmed/35927243
http://dx.doi.org/10.1038/s41467-022-31968-z
_version_ 1784762702486306816
author Sadée, Christoph
Hagler, Lauren D.
Becker, Winston R.
Jarmoskaite, Inga
Vaidyanathan, Pavanapuresan P.
Denny, Sarah K.
Greenleaf, William J.
Herschlag, Daniel
author_facet Sadée, Christoph
Hagler, Lauren D.
Becker, Winston R.
Jarmoskaite, Inga
Vaidyanathan, Pavanapuresan P.
Denny, Sarah K.
Greenleaf, William J.
Herschlag, Daniel
author_sort Sadée, Christoph
collection PubMed
description Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
format Online
Article
Text
id pubmed-9352680
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93526802022-08-06 A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4 Sadée, Christoph Hagler, Lauren D. Becker, Winston R. Jarmoskaite, Inga Vaidyanathan, Pavanapuresan P. Denny, Sarah K. Greenleaf, William J. Herschlag, Daniel Nat Commun Article Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs. Nature Publishing Group UK 2022-08-04 /pmc/articles/PMC9352680/ /pubmed/35927243 http://dx.doi.org/10.1038/s41467-022-31968-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sadée, Christoph
Hagler, Lauren D.
Becker, Winston R.
Jarmoskaite, Inga
Vaidyanathan, Pavanapuresan P.
Denny, Sarah K.
Greenleaf, William J.
Herschlag, Daniel
A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title_full A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title_fullStr A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title_full_unstemmed A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title_short A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4
title_sort comprehensive thermodynamic model for rna binding by the saccharomyces cerevisiae pumilio protein puf4
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352680/
https://www.ncbi.nlm.nih.gov/pubmed/35927243
http://dx.doi.org/10.1038/s41467-022-31968-z
work_keys_str_mv AT sadeechristoph acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT haglerlaurend acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT beckerwinstonr acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT jarmoskaiteinga acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT vaidyanathanpavanapuresanp acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT dennysarahk acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT greenleafwilliamj acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT herschlagdaniel acomprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT sadeechristoph comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT haglerlaurend comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT beckerwinstonr comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT jarmoskaiteinga comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT vaidyanathanpavanapuresanp comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT dennysarahk comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT greenleafwilliamj comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4
AT herschlagdaniel comprehensivethermodynamicmodelforrnabindingbythesaccharomycescerevisiaepumilioproteinpuf4