Cargando…
SeEn: Sequential enriched datasets for sequence-aware recommendations
The recommendation of items based on the sequential past users’ preferences has evolved in the last few years, mostly due to deep learning approaches, such as BERT4Rec. However, in scientific fields, recommender systems for recommending the next best item are not widely used. The main goal of this w...
Autores principales: | Barros, Marcia, Moitinho, André, Couto, Francisco M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352715/ https://www.ncbi.nlm.nih.gov/pubmed/35927282 http://dx.doi.org/10.1038/s41597-022-01598-7 |
Ejemplares similares
-
Hybrid semantic recommender system for chemical compounds in large-scale datasets
por: Barros, Marcia, et al.
Publicado: (2021) -
Hybrid Semantic Recommender System for Chemical Compounds
por: Barros, Márcia, et al.
Publicado: (2020) -
COVID-19 recommender system based on an annotated multilingual corpus
por: Barros, Márcia, et al.
Publicado: (2021) -
Dataset decay and the problem of sequential analyses on open datasets
por: Thompson, William Hedley, et al.
Publicado: (2020) -
FISETIO: A FIne-grained, Structured and Enriched Tourism Dataset for Indoor and Outdoor attractions
por: Khatibi, Amir, et al.
Publicado: (2019)