Cargando…

Ultra-low-power second-order nonlinear optics on a chip

Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order op...

Descripción completa

Detalles Bibliográficos
Autores principales: McKenna, Timothy P., Stokowski, Hubert S., Ansari, Vahid, Mishra, Jatadhari, Jankowski, Marc, Sarabalis, Christopher J., Herrmann, Jason F., Langrock, Carsten, Fejer, Martin M., Safavi-Naeini, Amir H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352777/
https://www.ncbi.nlm.nih.gov/pubmed/35927246
http://dx.doi.org/10.1038/s41467-022-31134-5
Descripción
Sumario:Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.