Cargando…
Automated vetting of radiology referrals: exploring natural language processing and traditional machine learning approaches
BACKGROUND: With a significant increase in utilisation of computed tomography (CT), inappropriate imaging is a significant concern. Manual justification audits of radiology referrals are time-consuming and require financial resources. We aimed to retrospectively audit justification of brain CT refer...
Autores principales: | Potočnik, Jaka, Thomas, Edel, Killeen, Ronan, Foley, Shane, Lawlor, Aonghus, Stowe, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352827/ https://www.ncbi.nlm.nih.gov/pubmed/35925429 http://dx.doi.org/10.1186/s13244-022-01267-8 |
Ejemplares similares
-
Cybersecurity considerations for radiology departments involved with artificial intelligence
por: Kelly, Brendan S., et al.
Publicado: (2023) -
Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
por: Kelly, Brendan S., et al.
Publicado: (2023) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
Radiology artificial intelligence, a systematic evaluation of methods (RAISE): a systematic review protocol
por: Kelly, Brendan, et al.
Publicado: (2020) -
VetTag: improving automated veterinary diagnosis coding via large-scale language modeling
por: Zhang, Yuhui, et al.
Publicado: (2019)