Cargando…
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
Anomaly detection through employing machine learning techniques has emerged as a novel powerful tool in the search for new physics beyond the Standard Model. Historically similar to the development of jet observables, theoretical consistency has not always assumed a central role in the fast developm...
Autores principales: | Atkinson, Oliver, Bhardwaj, Akanksha, Englert, Christoph, Konar, Partha, Ngairangbam, Vishal S., Spannowsky, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352857/ https://www.ncbi.nlm.nih.gov/pubmed/35937137 http://dx.doi.org/10.3389/frai.2022.943135 |
Ejemplares similares
-
Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models
por: Alvarez, E., et al.
Publicado: (2022) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
Anomaly detection for blueberry data using sparse autoencoder-support vector machine
por: Wei, Dianwen, et al.
Publicado: (2023) -
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
Bankruptcy prediction using ensemble of autoencoders optimized by genetic algorithm
por: Kanász, Róbert, et al.
Publicado: (2023)