Cargando…
Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach
O6-Methylguanine-DNA-methyltransferase (MGMT) promoter methylation was shown in many studies to be an important predictive biomarker for temozolomide (TMZ) resistance and poor progression-free survival in glioblastoma multiforme (GBM) patients. However, identifying the MGMT methylation status using...
Autores principales: | Do, Duyen Thi, Yang, Ming-Ren, Lam, Luu Ho Thanh, Le, Nguyen Quoc Khanh, Wu, Yu-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352871/ https://www.ncbi.nlm.nih.gov/pubmed/35927323 http://dx.doi.org/10.1038/s41598-022-17707-w |
Ejemplares similares
-
A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in Lower-Grade Gliomas
por: Lam, Luu Ho Thanh, et al.
Publicado: (2022) -
XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2020) -
Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma
por: Sasaki, Takahiro, et al.
Publicado: (2019) -
Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone
por: Tixier, Florent, et al.
Publicado: (2019) -
Identifying the optimal cutoff point for MGMT promoter methylation status in glioblastoma
por: Nguyen, Ngan, et al.
Publicado: (2021)