Cargando…

Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids

The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stre...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Susana S-Y., Sim, Don C.N., Carissimo, Guillaume, Lim, Hong-Hwa, Lam, Kong-Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352910/
https://www.ncbi.nlm.nih.gov/pubmed/35798143
http://dx.doi.org/10.1016/j.jbc.2022.102231
_version_ 1784762753084293120
author Kim, Susana S-Y.
Sim, Don C.N.
Carissimo, Guillaume
Lim, Hong-Hwa
Lam, Kong-Peng
author_facet Kim, Susana S-Y.
Sim, Don C.N.
Carissimo, Guillaume
Lim, Hong-Hwa
Lam, Kong-Peng
author_sort Kim, Susana S-Y.
collection PubMed
description The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stress granule assembly, whether G3BP1 is phosphorylated at tyrosine residues and how this posttranslational modification might affect its functions is less clear. Here, we show using immunoprecipitation and immunoblotting studies with 4G10 antibody that G3BP1 is tyrosine-phosphorylated when cells are stimulated with the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid to mimic viral infection. We further demonstrate via co-immunoprecipitation and inhibitor studies that Bruton’s tyrosine kinase (BTK) binds and phosphorylates G3BP1. The nuclear transport factor 2–like domain of G3BP1 was previously shown to be critical for its self-association to form stress granules. Our mass spectrometry, mutational and biochemical cross-linking analyses indicate that the tyrosine-40 residue in this domain is phosphorylated by BTK and critical for G3BP1 oligomerization. Furthermore, as visualized via confocal microscopy, pretreatment of cells with the BTK inhibitor LFM-A13 or genetic deletion of the btk gene or mutation of G3BP1-Y40 residue to alanine or phenylalanine all significantly attenuated the formation of antiviral stress granule aggregates upon polyinosinic:polycytidylic acid treatment. Taken together, our data indicate that BTK phosphorylation of G3BP1 induces G3BP1 oligomerization and facilitates the condensation of ribonucleoprotein complexes into macromolecular aggregates.
format Online
Article
Text
id pubmed-9352910
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-93529102022-08-09 Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids Kim, Susana S-Y. Sim, Don C.N. Carissimo, Guillaume Lim, Hong-Hwa Lam, Kong-Peng J Biol Chem Research Article The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stress granule assembly, whether G3BP1 is phosphorylated at tyrosine residues and how this posttranslational modification might affect its functions is less clear. Here, we show using immunoprecipitation and immunoblotting studies with 4G10 antibody that G3BP1 is tyrosine-phosphorylated when cells are stimulated with the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid to mimic viral infection. We further demonstrate via co-immunoprecipitation and inhibitor studies that Bruton’s tyrosine kinase (BTK) binds and phosphorylates G3BP1. The nuclear transport factor 2–like domain of G3BP1 was previously shown to be critical for its self-association to form stress granules. Our mass spectrometry, mutational and biochemical cross-linking analyses indicate that the tyrosine-40 residue in this domain is phosphorylated by BTK and critical for G3BP1 oligomerization. Furthermore, as visualized via confocal microscopy, pretreatment of cells with the BTK inhibitor LFM-A13 or genetic deletion of the btk gene or mutation of G3BP1-Y40 residue to alanine or phenylalanine all significantly attenuated the formation of antiviral stress granule aggregates upon polyinosinic:polycytidylic acid treatment. Taken together, our data indicate that BTK phosphorylation of G3BP1 induces G3BP1 oligomerization and facilitates the condensation of ribonucleoprotein complexes into macromolecular aggregates. American Society for Biochemistry and Molecular Biology 2022-07-04 /pmc/articles/PMC9352910/ /pubmed/35798143 http://dx.doi.org/10.1016/j.jbc.2022.102231 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Kim, Susana S-Y.
Sim, Don C.N.
Carissimo, Guillaume
Lim, Hong-Hwa
Lam, Kong-Peng
Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title_full Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title_fullStr Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title_full_unstemmed Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title_short Bruton’s tyrosine kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
title_sort bruton’s tyrosine kinase phosphorylates scaffolding and rna-binding protein g3bp1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352910/
https://www.ncbi.nlm.nih.gov/pubmed/35798143
http://dx.doi.org/10.1016/j.jbc.2022.102231
work_keys_str_mv AT kimsusanasy brutonstyrosinekinasephosphorylatesscaffoldingandrnabindingproteing3bp1toinducestressgranuleaggregationduringhostsensingofforeignribonucleicacids
AT simdoncn brutonstyrosinekinasephosphorylatesscaffoldingandrnabindingproteing3bp1toinducestressgranuleaggregationduringhostsensingofforeignribonucleicacids
AT carissimoguillaume brutonstyrosinekinasephosphorylatesscaffoldingandrnabindingproteing3bp1toinducestressgranuleaggregationduringhostsensingofforeignribonucleicacids
AT limhonghwa brutonstyrosinekinasephosphorylatesscaffoldingandrnabindingproteing3bp1toinducestressgranuleaggregationduringhostsensingofforeignribonucleicacids
AT lamkongpeng brutonstyrosinekinasephosphorylatesscaffoldingandrnabindingproteing3bp1toinducestressgranuleaggregationduringhostsensingofforeignribonucleicacids