Cargando…
Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk
BACKGROUND AND PURPOSE: The geometrical accuracy of auto-segmentation using convolutional neural networks (CNNs) has been demonstrated. This study aimed to investigate the dose-volume impact of differences between automatic and manual OARs for locally advanced (LA) and peripherally located early-sta...
Autores principales: | Johnston, Noémie, De Rycke, Jeffrey, Lievens, Yolande, van Eijkeren, Marc, Aelterman, Jan, Vandersmissen, Eva, Ponte, Stephan, Vanderstraeten, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352974/ https://www.ncbi.nlm.nih.gov/pubmed/35936797 http://dx.doi.org/10.1016/j.phro.2022.07.004 |
Ejemplares similares
-
Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network
por: Kim, Hojin, et al.
Publicado: (2020) -
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Hussain, Raabid, et al.
Publicado: (2021) -
A blind randomized validated convolutional neural network for auto‐segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy
por: Wu, Yijun, et al.
Publicado: (2021) -
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
por: Abdelaziz, Mohammed, et al.
Publicado: (2022) -
Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth
por: Sartor, Hanna, et al.
Publicado: (2020)