Cargando…

Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning

ABSTRACT: Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining...

Descripción completa

Detalles Bibliográficos
Autores principales: Burkhardt, Daniel B., San Juan, Beatriz P., Lock, John G., Krishnaswamy, Smita, Chaffer, Christine L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353259/
https://www.ncbi.nlm.nih.gov/pubmed/35736000
http://dx.doi.org/10.1158/2159-8290.CD-21-0282
Descripción
Sumario:ABSTRACT: Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that “state-gating” therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance. SIGNIFICANCE: Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.