Cargando…
Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353488/ https://www.ncbi.nlm.nih.gov/pubmed/35929226 http://dx.doi.org/10.1002/jia2.25954 |
_version_ | 1784762874633125888 |
---|---|
author | Palma, Anton M. Marra, Giampiero Bray, Rachel Saito, Suzue Awor, Anna Colletar Jalloh, Mohamed F. Kailembo, Alexander Kirungi, Wilford Mgomella, George S. Njau, Prosper Voetsch, Andrew C. Ward, Jennifer A. Bärnighausen, Till Harling, Guy |
author_facet | Palma, Anton M. Marra, Giampiero Bray, Rachel Saito, Suzue Awor, Anna Colletar Jalloh, Mohamed F. Kailembo, Alexander Kirungi, Wilford Mgomella, George S. Njau, Prosper Voetsch, Andrew C. Ward, Jennifer A. Bärnighausen, Till Harling, Guy |
author_sort | Palma, Anton M. |
collection | PubMed |
description | INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are missing‐not‐at‐random, for example when people living with HIV more frequently decline participation. Heckman‐type selection models can, under certain assumptions, recover unbiased prevalence estimates in such scenarios. METHODS: We pooled data from 142,706 participants aged 15–49 years from nationally representative cross‐sectional Population‐based HIV Impact Assessments in seven countries in sub‐Saharan Africa, conducted between 2015 and 2018 in Tanzania, Uganda, Malawi, Zambia, Zimbabwe, Lesotho and Eswatini. We compared sex‐stratified HIV prevalence estimates from unadjusted, IPW, MI and selection models, controlling for household and individual‐level predictors of non‐participation, and assessed the sensitivity of selection models to the copula function specifying the correlation between study participation and HIV status. RESULTS: In total, 84.1% of participants provided a blood sample to determine HIV serostatus (range: 76% in Malawi to 95% in Uganda). HIV prevalence estimates from selection models diverged from IPW and MI models by up to 5% in Lesotho, without substantial precision loss. In Tanzania, the IPW model yielded lower HIV prevalence estimates among males than the best‐fitting copula selection model (3.8% vs. 7.9%). CONCLUSIONS: We demonstrate how HIV prevalence estimates from selection models can differ from those obtained under missing‐at‐random assumptions. Further benefits include exploration of plausible relationships between participation and outcome. While selection models require additional assumptions and careful specification, they are an important tool for triangulating prevalence estimates in surveys with substantial missing data due to non‐participation. |
format | Online Article Text |
id | pubmed-9353488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93534882022-08-09 Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries Palma, Anton M. Marra, Giampiero Bray, Rachel Saito, Suzue Awor, Anna Colletar Jalloh, Mohamed F. Kailembo, Alexander Kirungi, Wilford Mgomella, George S. Njau, Prosper Voetsch, Andrew C. Ward, Jennifer A. Bärnighausen, Till Harling, Guy J Int AIDS Soc Research Articles INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are missing‐not‐at‐random, for example when people living with HIV more frequently decline participation. Heckman‐type selection models can, under certain assumptions, recover unbiased prevalence estimates in such scenarios. METHODS: We pooled data from 142,706 participants aged 15–49 years from nationally representative cross‐sectional Population‐based HIV Impact Assessments in seven countries in sub‐Saharan Africa, conducted between 2015 and 2018 in Tanzania, Uganda, Malawi, Zambia, Zimbabwe, Lesotho and Eswatini. We compared sex‐stratified HIV prevalence estimates from unadjusted, IPW, MI and selection models, controlling for household and individual‐level predictors of non‐participation, and assessed the sensitivity of selection models to the copula function specifying the correlation between study participation and HIV status. RESULTS: In total, 84.1% of participants provided a blood sample to determine HIV serostatus (range: 76% in Malawi to 95% in Uganda). HIV prevalence estimates from selection models diverged from IPW and MI models by up to 5% in Lesotho, without substantial precision loss. In Tanzania, the IPW model yielded lower HIV prevalence estimates among males than the best‐fitting copula selection model (3.8% vs. 7.9%). CONCLUSIONS: We demonstrate how HIV prevalence estimates from selection models can differ from those obtained under missing‐at‐random assumptions. Further benefits include exploration of plausible relationships between participation and outcome. While selection models require additional assumptions and careful specification, they are an important tool for triangulating prevalence estimates in surveys with substantial missing data due to non‐participation. John Wiley and Sons Inc. 2022-08-05 /pmc/articles/PMC9353488/ /pubmed/35929226 http://dx.doi.org/10.1002/jia2.25954 Text en © 2022 The Authors. Journal of the International AIDS Society published by John Wiley & Sons Ltd on behalf of the International AIDS Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Palma, Anton M. Marra, Giampiero Bray, Rachel Saito, Suzue Awor, Anna Colletar Jalloh, Mohamed F. Kailembo, Alexander Kirungi, Wilford Mgomella, George S. Njau, Prosper Voetsch, Andrew C. Ward, Jennifer A. Bärnighausen, Till Harling, Guy Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title | Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title_full | Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title_fullStr | Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title_full_unstemmed | Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title_short | Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries |
title_sort | correcting for selection bias in hiv prevalence estimates: an application of sample selection models using data from population‐based hiv surveys in seven sub‐saharan african countries |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353488/ https://www.ncbi.nlm.nih.gov/pubmed/35929226 http://dx.doi.org/10.1002/jia2.25954 |
work_keys_str_mv | AT palmaantonm correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT marragiampiero correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT brayrachel correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT saitosuzue correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT aworannacolletar correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT jallohmohamedf correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT kailemboalexander correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT kirungiwilford correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT mgomellageorges correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT njauprosper correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT voetschandrewc correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT wardjennifera correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT barnighausentill correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries AT harlingguy correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries |