Cargando…

Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries

INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are...

Descripción completa

Detalles Bibliográficos
Autores principales: Palma, Anton M., Marra, Giampiero, Bray, Rachel, Saito, Suzue, Awor, Anna Colletar, Jalloh, Mohamed F., Kailembo, Alexander, Kirungi, Wilford, Mgomella, George S., Njau, Prosper, Voetsch, Andrew C., Ward, Jennifer A., Bärnighausen, Till, Harling, Guy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353488/
https://www.ncbi.nlm.nih.gov/pubmed/35929226
http://dx.doi.org/10.1002/jia2.25954
_version_ 1784762874633125888
author Palma, Anton M.
Marra, Giampiero
Bray, Rachel
Saito, Suzue
Awor, Anna Colletar
Jalloh, Mohamed F.
Kailembo, Alexander
Kirungi, Wilford
Mgomella, George S.
Njau, Prosper
Voetsch, Andrew C.
Ward, Jennifer A.
Bärnighausen, Till
Harling, Guy
author_facet Palma, Anton M.
Marra, Giampiero
Bray, Rachel
Saito, Suzue
Awor, Anna Colletar
Jalloh, Mohamed F.
Kailembo, Alexander
Kirungi, Wilford
Mgomella, George S.
Njau, Prosper
Voetsch, Andrew C.
Ward, Jennifer A.
Bärnighausen, Till
Harling, Guy
author_sort Palma, Anton M.
collection PubMed
description INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are missing‐not‐at‐random, for example when people living with HIV more frequently decline participation. Heckman‐type selection models can, under certain assumptions, recover unbiased prevalence estimates in such scenarios. METHODS: We pooled data from 142,706 participants aged 15–49 years from nationally representative cross‐sectional Population‐based HIV Impact Assessments in seven countries in sub‐Saharan Africa, conducted between 2015 and 2018 in Tanzania, Uganda, Malawi, Zambia, Zimbabwe, Lesotho and Eswatini. We compared sex‐stratified HIV prevalence estimates from unadjusted, IPW, MI and selection models, controlling for household and individual‐level predictors of non‐participation, and assessed the sensitivity of selection models to the copula function specifying the correlation between study participation and HIV status. RESULTS: In total, 84.1% of participants provided a blood sample to determine HIV serostatus (range: 76% in Malawi to 95% in Uganda). HIV prevalence estimates from selection models diverged from IPW and MI models by up to 5% in Lesotho, without substantial precision loss. In Tanzania, the IPW model yielded lower HIV prevalence estimates among males than the best‐fitting copula selection model (3.8% vs. 7.9%). CONCLUSIONS: We demonstrate how HIV prevalence estimates from selection models can differ from those obtained under missing‐at‐random assumptions. Further benefits include exploration of plausible relationships between participation and outcome. While selection models require additional assumptions and careful specification, they are an important tool for triangulating prevalence estimates in surveys with substantial missing data due to non‐participation.
format Online
Article
Text
id pubmed-9353488
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93534882022-08-09 Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries Palma, Anton M. Marra, Giampiero Bray, Rachel Saito, Suzue Awor, Anna Colletar Jalloh, Mohamed F. Kailembo, Alexander Kirungi, Wilford Mgomella, George S. Njau, Prosper Voetsch, Andrew C. Ward, Jennifer A. Bärnighausen, Till Harling, Guy J Int AIDS Soc Research Articles INTRODUCTION: Population‐based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible to substantial non‐participation (up to 30%). Analytical missing data methods, including inverse‐probability weighting (IPW) and multiple imputation (MI), are biased when data are missing‐not‐at‐random, for example when people living with HIV more frequently decline participation. Heckman‐type selection models can, under certain assumptions, recover unbiased prevalence estimates in such scenarios. METHODS: We pooled data from 142,706 participants aged 15–49 years from nationally representative cross‐sectional Population‐based HIV Impact Assessments in seven countries in sub‐Saharan Africa, conducted between 2015 and 2018 in Tanzania, Uganda, Malawi, Zambia, Zimbabwe, Lesotho and Eswatini. We compared sex‐stratified HIV prevalence estimates from unadjusted, IPW, MI and selection models, controlling for household and individual‐level predictors of non‐participation, and assessed the sensitivity of selection models to the copula function specifying the correlation between study participation and HIV status. RESULTS: In total, 84.1% of participants provided a blood sample to determine HIV serostatus (range: 76% in Malawi to 95% in Uganda). HIV prevalence estimates from selection models diverged from IPW and MI models by up to 5% in Lesotho, without substantial precision loss. In Tanzania, the IPW model yielded lower HIV prevalence estimates among males than the best‐fitting copula selection model (3.8% vs. 7.9%). CONCLUSIONS: We demonstrate how HIV prevalence estimates from selection models can differ from those obtained under missing‐at‐random assumptions. Further benefits include exploration of plausible relationships between participation and outcome. While selection models require additional assumptions and careful specification, they are an important tool for triangulating prevalence estimates in surveys with substantial missing data due to non‐participation. John Wiley and Sons Inc. 2022-08-05 /pmc/articles/PMC9353488/ /pubmed/35929226 http://dx.doi.org/10.1002/jia2.25954 Text en © 2022 The Authors. Journal of the International AIDS Society published by John Wiley & Sons Ltd on behalf of the International AIDS Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Palma, Anton M.
Marra, Giampiero
Bray, Rachel
Saito, Suzue
Awor, Anna Colletar
Jalloh, Mohamed F.
Kailembo, Alexander
Kirungi, Wilford
Mgomella, George S.
Njau, Prosper
Voetsch, Andrew C.
Ward, Jennifer A.
Bärnighausen, Till
Harling, Guy
Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title_full Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title_fullStr Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title_full_unstemmed Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title_short Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population‐based HIV surveys in seven sub‐Saharan African countries
title_sort correcting for selection bias in hiv prevalence estimates: an application of sample selection models using data from population‐based hiv surveys in seven sub‐saharan african countries
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353488/
https://www.ncbi.nlm.nih.gov/pubmed/35929226
http://dx.doi.org/10.1002/jia2.25954
work_keys_str_mv AT palmaantonm correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT marragiampiero correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT brayrachel correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT saitosuzue correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT aworannacolletar correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT jallohmohamedf correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT kailemboalexander correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT kirungiwilford correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT mgomellageorges correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT njauprosper correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT voetschandrewc correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT wardjennifera correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT barnighausentill correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries
AT harlingguy correctingforselectionbiasinhivprevalenceestimatesanapplicationofsampleselectionmodelsusingdatafrompopulationbasedhivsurveysinsevensubsaharanafricancountries