Cargando…
Semi-supervised vision transformer with adaptive token sampling for breast cancer classification
Various imaging techniques combined with machine learning (ML) models have been used to build computer-aided diagnosis (CAD) systems for breast cancer (BC) detection and classification. The rise of deep learning models in recent years, represented by convolutional neural network (CNN) models, has pu...
Autores principales: | Wang, Wei, Jiang, Ran, Cui, Ning, Li, Qian, Yuan, Feng, Xiao, Zhifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353650/ https://www.ncbi.nlm.nih.gov/pubmed/35935827 http://dx.doi.org/10.3389/fphar.2022.929755 |
Ejemplares similares
-
Semi-Supervised Feature Transformation for Tissue Image Classification
por: Watanabe, Kenji, et al.
Publicado: (2016) -
Bayesian semi-supervised classification of bacterial samples using MLST databases
por: Cheng, Lu, et al.
Publicado: (2011) -
Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm
por: Barrett, Neil, et al.
Publicado: (2011) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
The Tokens
por: Reid, Greg
Publicado: (2019)