Cargando…
COVID-RDNet: A novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images
Corona virus disease 2019 (COVID-19) testing relies on traditional screening methods, which require a lot of manpower and material resources. Recently, to effectively reduce the damage caused by radiation and enhance effectiveness, deep learning of classifying COVID-19 negative and positive using th...
Autores principales: | Fang, Lingling, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353669/ https://www.ncbi.nlm.nih.gov/pubmed/35945982 http://dx.doi.org/10.1016/j.bbe.2022.07.009 |
Ejemplares similares
-
Deep Ensemble Model for Classification of Novel Coronavirus in Chest X-Ray Images
por: Ahmad, Fareed, et al.
Publicado: (2021) -
Predicting pattern of coronavirus using X-ray and CT scan images
por: Khurana Batra, Payal, et al.
Publicado: (2022) -
Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients
Publicado: (2021) -
Application of machine learning in CT images and X-rays of COVID-19 pneumonia
por: Zhang, Fengjun
Publicado: (2021) -
Study on transfer learning capabilities for pneumonia classification in chest-x-rays images
por: Avola, Danilo, et al.
Publicado: (2022)