Cargando…
Classification of Twitter Vaping Discourse Using BERTweet: Comparative Deep Learning Study
BACKGROUND: Twitter provides a valuable platform for the surveillance and monitoring of public health topics; however, manually categorizing large quantities of Twitter data is labor intensive and presents barriers to identify major trends and sentiments. Additionally, while machine and deep learnin...
Autores principales: | Baker, William, Colditz, Jason B, Dobbs, Page D, Mai, Huy, Visweswaran, Shyam, Zhan, Justin, Primack, Brian A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353682/ https://www.ncbi.nlm.nih.gov/pubmed/35862172 http://dx.doi.org/10.2196/33678 |
Ejemplares similares
-
Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study
por: Visweswaran, Shyam, et al.
Publicado: (2020) -
Policy and Behavior: Comparisons between Twitter Discussions about the US Tobacco 21 Law and Other Age-Related Behaviors
por: Dobbs, Page D., et al.
Publicado: (2022) -
Twitter Misinformation Discourses About Vaping: Systematic Content Analysis
por: Al-Rawi, Ahmed, et al.
Publicado: (2023) -
Twitter Sentiment About the US Federal Tobacco 21 Law: Mixed Methods Analysis
por: Dobbs, Page D, et al.
Publicado: (2023) -
Exploring Factors That Predict Marketing of e-Cigarette Products on Twitter: Infodemiology Approach Using Time Series
por: Ezike, Nnamdi C, et al.
Publicado: (2022)