Cargando…
A deep learning model based on dynamic contrast-enhanced magnetic resonance imaging enables accurate prediction of benign and malignant breast lessons
OBJECTIVES: The study aims to investigate the value of a convolutional neural network (CNN) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting malignancy of breast lesions. METHODS: We developed a CNN model based on DCE-MRI to characterize breast lesions. Between N...
Autores principales: | Chen, Yanhong, Wang, Lijun, Luo, Ran, Wang, Shuang, Wang, Heng, Gao, Fei, Wang, Dengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353744/ https://www.ncbi.nlm.nih.gov/pubmed/35936673 http://dx.doi.org/10.3389/fonc.2022.943415 |
Ejemplares similares
-
Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for Identifying Benign and Malignant Breast Lesions of Sub-1 cm
por: Lin, Fan, et al.
Publicado: (2020) -
Comparative Diagnostic Accuracy of Contrast-Enhanced Ultrasound and Shear Wave Elastography in Differentiating Benign and Malignant Lesions: A Network Meta-Analysis
por: Huang, Rongzhong, et al.
Publicado: (2019) -
Deep Learning for Differentiating Benign From Malignant Parotid Lesions on MR Images
por: Xia, Xianwu, et al.
Publicado: (2021) -
Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2020) -
Time Difference of Arrival on Contrast-Enhanced Ultrasound in Distinguishing Benign Inflammation From Malignant Peripheral Pulmonary Lesions
por: Tang, Min, et al.
Publicado: (2020)