Cargando…
Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs
The optimization of drug properties in the process of cancer drug development is very important to save research and development time and cost. In order to make the anti-breast cancer drug candidates with good biological activity, this paper collected 1974 compounds, firstly, the top 20 molecular de...
Autores principales: | Liu, Jiajia, Zhou, Zhihui, Kong, Shanshan, Ma, Zezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353770/ https://www.ncbi.nlm.nih.gov/pubmed/35936743 http://dx.doi.org/10.3389/fonc.2022.956705 |
Ejemplares similares
-
Self-attention random forest for breast cancer image classification
por: Li, Jia, et al.
Publicado: (2023) -
Replacing Manual Planning of Whole Breast Irradiation With Knowledge-Based Automatic Optimization by Virtual Tangential-Fields Arc Therapy
por: Castriconi, Roberta, et al.
Publicado: (2021) -
Automatic Tumor Grading on Colorectal Cancer Whole-Slide Images: Semi-Quantitative Gland Formation Percentage and New Indicator Exploration
por: Chen, Shenlun, et al.
Publicado: (2022) -
Semi-Automatic Prostate Segmentation From Ultrasound Images Using Machine Learning and Principal Curve Based on Interpretable Mathematical Model Expression
por: Peng, Tao, et al.
Publicado: (2022) -
Extracting Forest Parameters based on Stand Automatic Segmentation Algorithm
por: Zhao, Pengxiang, et al.
Publicado: (2020)