Cargando…
MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medica...
Autores principales: | Albaradei, Somayah, Albaradei, Abdurhman, Alsaedi, Asim, Uludag, Mahmut, Thafar, Maha A., Gojobori, Takashi, Essack, Magbubah, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353773/ https://www.ncbi.nlm.nih.gov/pubmed/35936793 http://dx.doi.org/10.3389/fmolb.2022.913602 |
Ejemplares similares
-
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021) -
Machine learning and deep learning methods that use omics data for metastasis prediction
por: Albaradei, Somayah, et al.
Publicado: (2021) -
Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA
por: Albaradei, Somayah, et al.
Publicado: (2020) -
MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
por: Albaradei, Somayah, et al.
Publicado: (2021) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023)