Cargando…
Novel compound heterozygous mutation of SLC12A3 in Gitelman syndrome co-existent with hyperthyroidism: A case report and literature review
BACKGROUND: Gitelman syndrome (GS) is a rare inherited autosomal recessive tubulopathy, characterized clinically by hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis, and is caused by an inactivating mutation in SLC12A3. GS is prone to misdiagnosis when occurring simultaneously wit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353888/ https://www.ncbi.nlm.nih.gov/pubmed/36158002 http://dx.doi.org/10.12998/wjcc.v10.i21.7483 |
Sumario: | BACKGROUND: Gitelman syndrome (GS) is a rare inherited autosomal recessive tubulopathy, characterized clinically by hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis, and is caused by an inactivating mutation in SLC12A3. GS is prone to misdiagnosis when occurring simultaneously with hyperthyroidism. It is important to consider the possibility of other diseases when hyperthyroidism is combined with hypokalemia, which is difficult to correct. CASE SUMMARY: A female patient with hyperthyroidism complicated with limb weakness was diagnosed with thyrotoxic hypokalemic periodic paralysis for 4 mo. However, the patient’s serum potassium level remained low despite sufficient potassium replacement and remission of hyperthyroidism. GS was confirmed by whole exome and Sanger sequencing. Gene sequencing revealed compound heterozygous mutations of c.488C>T (p.Thr163Met), c.2612G>A (p.Arg871His), and c.1171_1178dupGCCACCAT (p.Ile393fs) in SLC12A3. Protein molecular modeling was performed to predict the effects of the identified missense mutations. All three mutations cause changes in protein structure and may result in abnormal protein function. All previously reported cases of GS coexisting with autoimmune thyroid disease are reviewed. CONCLUSION: We have identified a novel compound heterozygous mutation in SLC12A3. The present study provides new genetic evidence for GS. |
---|