Cargando…

TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution

[Image: see text] Nanotopography is an effective method to regulate cells’ behaviors to improve Ti orthopaedic implants’ in vivo performance. However, the mechanism underlying cellular matrix–nanotopography interactions that allows the modulation of cell adhesion has remained elusive. In this study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Jiajun, Zhao, Shudong, Gao, Xiangsheng, Varma, Swastina Nath, Xu, Wei, Tamaddon, Maryam, Thorogate, Richard, Yu, Haoran, Lu, Xin, Salmeron-Sanchez, Manuel, Liu, Chaozong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354007/
https://www.ncbi.nlm.nih.gov/pubmed/35867934
http://dx.doi.org/10.1021/acsami.2c07652
_version_ 1784762970565246976
author Luo, Jiajun
Zhao, Shudong
Gao, Xiangsheng
Varma, Swastina Nath
Xu, Wei
Tamaddon, Maryam
Thorogate, Richard
Yu, Haoran
Lu, Xin
Salmeron-Sanchez, Manuel
Liu, Chaozong
author_facet Luo, Jiajun
Zhao, Shudong
Gao, Xiangsheng
Varma, Swastina Nath
Xu, Wei
Tamaddon, Maryam
Thorogate, Richard
Yu, Haoran
Lu, Xin
Salmeron-Sanchez, Manuel
Liu, Chaozong
author_sort Luo, Jiajun
collection PubMed
description [Image: see text] Nanotopography is an effective method to regulate cells’ behaviors to improve Ti orthopaedic implants’ in vivo performance. However, the mechanism underlying cellular matrix–nanotopography interactions that allows the modulation of cell adhesion has remained elusive. In this study, we have developed novel nanotopographic features on Ti substrates and studied human osteoblast (HOb) adhesion on nanotopographies to reveal the interactive mechanism regulating cell adhesion and spreading. Through nanoflat, nanoconvex, and nanoconcave TiO(2) nanotopographies, the evolution of Coulomb’s force between the extracellular matrix and nanotopographies has been estimated and comparatively analyzed, along with the assessment of cellular responses of HOb. We show that HObs exhibited greater adhesion and spreading on nanoconvex surfaces where they formed super matured focal adhesions and an ordered actin cytoskeleton. It also demonstrated that Coulomb’s force on nanoconvex features exhibits a more intense and concentrated evolution than that of nanoconcave features, which may result in a high dense distribution of fibronectin. Thus, this work is meaningful for novel Ti-based orthopaedic implants’ surface designs for enhancing their in vivo performance.
format Online
Article
Text
id pubmed-9354007
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93540072022-08-06 TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution Luo, Jiajun Zhao, Shudong Gao, Xiangsheng Varma, Swastina Nath Xu, Wei Tamaddon, Maryam Thorogate, Richard Yu, Haoran Lu, Xin Salmeron-Sanchez, Manuel Liu, Chaozong ACS Appl Mater Interfaces [Image: see text] Nanotopography is an effective method to regulate cells’ behaviors to improve Ti orthopaedic implants’ in vivo performance. However, the mechanism underlying cellular matrix–nanotopography interactions that allows the modulation of cell adhesion has remained elusive. In this study, we have developed novel nanotopographic features on Ti substrates and studied human osteoblast (HOb) adhesion on nanotopographies to reveal the interactive mechanism regulating cell adhesion and spreading. Through nanoflat, nanoconvex, and nanoconcave TiO(2) nanotopographies, the evolution of Coulomb’s force between the extracellular matrix and nanotopographies has been estimated and comparatively analyzed, along with the assessment of cellular responses of HOb. We show that HObs exhibited greater adhesion and spreading on nanoconvex surfaces where they formed super matured focal adhesions and an ordered actin cytoskeleton. It also demonstrated that Coulomb’s force on nanoconvex features exhibits a more intense and concentrated evolution than that of nanoconcave features, which may result in a high dense distribution of fibronectin. Thus, this work is meaningful for novel Ti-based orthopaedic implants’ surface designs for enhancing their in vivo performance. American Chemical Society 2022-07-22 2022-08-03 /pmc/articles/PMC9354007/ /pubmed/35867934 http://dx.doi.org/10.1021/acsami.2c07652 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Luo, Jiajun
Zhao, Shudong
Gao, Xiangsheng
Varma, Swastina Nath
Xu, Wei
Tamaddon, Maryam
Thorogate, Richard
Yu, Haoran
Lu, Xin
Salmeron-Sanchez, Manuel
Liu, Chaozong
TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title_full TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title_fullStr TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title_full_unstemmed TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title_short TiO(2) Nanotopography-Driven Osteoblast Adhesion through Coulomb’s Force Evolution
title_sort tio(2) nanotopography-driven osteoblast adhesion through coulomb’s force evolution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354007/
https://www.ncbi.nlm.nih.gov/pubmed/35867934
http://dx.doi.org/10.1021/acsami.2c07652
work_keys_str_mv AT luojiajun tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT zhaoshudong tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT gaoxiangsheng tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT varmaswastinanath tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT xuwei tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT tamaddonmaryam tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT thorogaterichard tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT yuhaoran tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT luxin tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT salmeronsanchezmanuel tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution
AT liuchaozong tio2nanotopographydrivenosteoblastadhesionthroughcoulombsforceevolution