Cargando…
MLEE: A method for extracting object-level medical knowledge graph entities from Chinese clinical records
As a typical knowledge-intensive industry, the medical field uses knowledge graph technology to construct causal inference calculations, such as “symptom-disease”, “laboratory examination/imaging examination-disease”, and “disease-treatment method”. The continuous expansion of large electronic clini...
Autores principales: | Zhao, Genghong, Gu, Wenjian, Cai, Wei, Zhao, Zhiying, Zhang, Xia, Liu, Jiren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354090/ https://www.ncbi.nlm.nih.gov/pubmed/35938002 http://dx.doi.org/10.3389/fgene.2022.900242 |
Ejemplares similares
-
Biological gene extraction path based on knowledge graph and natural language processing
por: Zhang, Canlin, et al.
Publicado: (2023) -
Bioinformatic workflow fragment discovery leveraging the social-aware knowledge graph
por: Diao, Jin, et al.
Publicado: (2022) -
Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction
por: Liu, Feifei, et al.
Publicado: (2023) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020)