Cargando…
NEIM-02 DEVELOPMENT OF A DEEP LEARNING MODEL FOR DISCRIMINATING TRUE PROGRESSION FROM PSEUDOPROGRESSION IN GLIOBLASTOMA PATIENTS
INTRODUCTION: Glioblastomas (GBMs) are highly aggressive tumors. Despite multimodal treatment, its median overall survival ranges between 16 and 20 months. The standard treatment regimen consists of surgical resection followed by concurrent chemoradiotherapy and adjuvant temozolomide. Despite temozo...
Autores principales: | Moassefi, Mana, Faghani, Shahriar, Conte, Gian Marco, Rouzrokh, Pouria, Kowalchuk, Roman O, Trifiletti, Daniel, Erickson, BradleyJ |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354212/ http://dx.doi.org/10.1093/noajnl/vdac078.069 |
Ejemplares similares
-
Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
por: Khosravi, Bardia, et al.
Publicado: (2022) -
Machine Learning in Cardiovascular Imaging: A Scoping Review of Published Literature
por: Rouzrokh, Pouria, et al.
Publicado: (2022) -
NEIM-01 INCIDENCE AND DIAGNOSTIC TECHNIQUES FOR LEPTOMENINGEAL DISEASE IN PATIENTS WITH BRAIN METASTASIS
por: Henry, Katie, et al.
Publicado: (2022) -
Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences
por: Wang, Wesley, et al.
Publicado: (2023) -
NEIM-08 A PHASE II STUDY OF MULTIPARAMETRIC MR-GUIDED HIGH DOSE ADAPTIVE RADIOTHERAPY WITH CONCURRENT TEMOZOLOMIDE IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA
por: Kim, Michelle, et al.
Publicado: (2022)