Cargando…

Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity

[Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a so...

Descripción completa

Detalles Bibliográficos
Autores principales: Madden, David Gerard, O’Nolan, Daniel, Rampal, Nakul, Babu, Robin, Çamur, Ceren, Al Shakhs, Ali N., Zhang, Shi-Yuan, Rance, Graham A., Perez, Javier, Maria Casati, Nicola Pietro, Cuadrado-Collados, Carlos, O’Sullivan, Denis, Rice, Nicholas P., Gennett, Thomas, Parilla, Philip, Shulda, Sarah, Hurst, Katherine E., Stavila, Vitalie, Allendorf, Mark D., Silvestre-Albero, Joaquin, Forse, Alexander C., Champness, Neil R., Chapman, Karena W., Fairen-Jimenez, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354247/
https://www.ncbi.nlm.nih.gov/pubmed/35876689
http://dx.doi.org/10.1021/jacs.2c04608
_version_ 1784763024366632960
author Madden, David Gerard
O’Nolan, Daniel
Rampal, Nakul
Babu, Robin
Çamur, Ceren
Al Shakhs, Ali N.
Zhang, Shi-Yuan
Rance, Graham A.
Perez, Javier
Maria Casati, Nicola Pietro
Cuadrado-Collados, Carlos
O’Sullivan, Denis
Rice, Nicholas P.
Gennett, Thomas
Parilla, Philip
Shulda, Sarah
Hurst, Katherine E.
Stavila, Vitalie
Allendorf, Mark D.
Silvestre-Albero, Joaquin
Forse, Alexander C.
Champness, Neil R.
Chapman, Karena W.
Fairen-Jimenez, David
author_facet Madden, David Gerard
O’Nolan, Daniel
Rampal, Nakul
Babu, Robin
Çamur, Ceren
Al Shakhs, Ali N.
Zhang, Shi-Yuan
Rance, Graham A.
Perez, Javier
Maria Casati, Nicola Pietro
Cuadrado-Collados, Carlos
O’Sullivan, Denis
Rice, Nicholas P.
Gennett, Thomas
Parilla, Philip
Shulda, Sarah
Hurst, Katherine E.
Stavila, Vitalie
Allendorf, Mark D.
Silvestre-Albero, Joaquin
Forse, Alexander C.
Champness, Neil R.
Chapman, Karena W.
Fairen-Jimenez, David
author_sort Madden, David Gerard
collection PubMed
description [Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal–organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H(2) storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H(2) as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF ((mono)MOF) for H(2) storage. After densification, this (mono)MOF stores 46 g L(–1) H(2) at 50 bar and 77 K and delivers 41 and 42 g L(–1) H(2) at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature–pressure (25–50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H(2) gas when compared with benchmark materials and an 83% reduction compared to compressed H(2) gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H(2) storage applications.
format Online
Article
Text
id pubmed-9354247
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93542472022-08-06 Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity Madden, David Gerard O’Nolan, Daniel Rampal, Nakul Babu, Robin Çamur, Ceren Al Shakhs, Ali N. Zhang, Shi-Yuan Rance, Graham A. Perez, Javier Maria Casati, Nicola Pietro Cuadrado-Collados, Carlos O’Sullivan, Denis Rice, Nicholas P. Gennett, Thomas Parilla, Philip Shulda, Sarah Hurst, Katherine E. Stavila, Vitalie Allendorf, Mark D. Silvestre-Albero, Joaquin Forse, Alexander C. Champness, Neil R. Chapman, Karena W. Fairen-Jimenez, David J Am Chem Soc [Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal–organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H(2) storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H(2) as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF ((mono)MOF) for H(2) storage. After densification, this (mono)MOF stores 46 g L(–1) H(2) at 50 bar and 77 K and delivers 41 and 42 g L(–1) H(2) at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature–pressure (25–50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H(2) gas when compared with benchmark materials and an 83% reduction compared to compressed H(2) gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H(2) storage applications. American Chemical Society 2022-07-25 2022-08-03 /pmc/articles/PMC9354247/ /pubmed/35876689 http://dx.doi.org/10.1021/jacs.2c04608 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Madden, David Gerard
O’Nolan, Daniel
Rampal, Nakul
Babu, Robin
Çamur, Ceren
Al Shakhs, Ali N.
Zhang, Shi-Yuan
Rance, Graham A.
Perez, Javier
Maria Casati, Nicola Pietro
Cuadrado-Collados, Carlos
O’Sullivan, Denis
Rice, Nicholas P.
Gennett, Thomas
Parilla, Philip
Shulda, Sarah
Hurst, Katherine E.
Stavila, Vitalie
Allendorf, Mark D.
Silvestre-Albero, Joaquin
Forse, Alexander C.
Champness, Neil R.
Chapman, Karena W.
Fairen-Jimenez, David
Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title_full Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title_fullStr Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title_full_unstemmed Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title_short Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
title_sort densified hkust-1 monoliths as a route to high volumetric and gravimetric hydrogen storage capacity
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354247/
https://www.ncbi.nlm.nih.gov/pubmed/35876689
http://dx.doi.org/10.1021/jacs.2c04608
work_keys_str_mv AT maddendavidgerard densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT onolandaniel densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT rampalnakul densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT baburobin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT camurceren densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT alshakhsalin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT zhangshiyuan densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT rancegrahama densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT perezjavier densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT mariacasatinicolapietro densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT cuadradocolladoscarlos densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT osullivandenis densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT ricenicholasp densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT gennettthomas densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT parillaphilip densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT shuldasarah densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT hurstkatherinee densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT stavilavitalie densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT allendorfmarkd densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT silvestrealberojoaquin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT forsealexanderc densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT champnessneilr densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT chapmankarenaw densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity
AT fairenjimenezdavid densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity