Cargando…
Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity
[Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a so...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354247/ https://www.ncbi.nlm.nih.gov/pubmed/35876689 http://dx.doi.org/10.1021/jacs.2c04608 |
_version_ | 1784763024366632960 |
---|---|
author | Madden, David Gerard O’Nolan, Daniel Rampal, Nakul Babu, Robin Çamur, Ceren Al Shakhs, Ali N. Zhang, Shi-Yuan Rance, Graham A. Perez, Javier Maria Casati, Nicola Pietro Cuadrado-Collados, Carlos O’Sullivan, Denis Rice, Nicholas P. Gennett, Thomas Parilla, Philip Shulda, Sarah Hurst, Katherine E. Stavila, Vitalie Allendorf, Mark D. Silvestre-Albero, Joaquin Forse, Alexander C. Champness, Neil R. Chapman, Karena W. Fairen-Jimenez, David |
author_facet | Madden, David Gerard O’Nolan, Daniel Rampal, Nakul Babu, Robin Çamur, Ceren Al Shakhs, Ali N. Zhang, Shi-Yuan Rance, Graham A. Perez, Javier Maria Casati, Nicola Pietro Cuadrado-Collados, Carlos O’Sullivan, Denis Rice, Nicholas P. Gennett, Thomas Parilla, Philip Shulda, Sarah Hurst, Katherine E. Stavila, Vitalie Allendorf, Mark D. Silvestre-Albero, Joaquin Forse, Alexander C. Champness, Neil R. Chapman, Karena W. Fairen-Jimenez, David |
author_sort | Madden, David Gerard |
collection | PubMed |
description | [Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal–organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H(2) storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H(2) as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF ((mono)MOF) for H(2) storage. After densification, this (mono)MOF stores 46 g L(–1) H(2) at 50 bar and 77 K and delivers 41 and 42 g L(–1) H(2) at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature–pressure (25–50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H(2) gas when compared with benchmark materials and an 83% reduction compared to compressed H(2) gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H(2) storage applications. |
format | Online Article Text |
id | pubmed-9354247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93542472022-08-06 Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity Madden, David Gerard O’Nolan, Daniel Rampal, Nakul Babu, Robin Çamur, Ceren Al Shakhs, Ali N. Zhang, Shi-Yuan Rance, Graham A. Perez, Javier Maria Casati, Nicola Pietro Cuadrado-Collados, Carlos O’Sullivan, Denis Rice, Nicholas P. Gennett, Thomas Parilla, Philip Shulda, Sarah Hurst, Katherine E. Stavila, Vitalie Allendorf, Mark D. Silvestre-Albero, Joaquin Forse, Alexander C. Champness, Neil R. Chapman, Karena W. Fairen-Jimenez, David J Am Chem Soc [Image: see text] We are currently witnessing the dawn of hydrogen (H(2)) economy, where H(2) will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H(2) can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal–organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H(2) storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H(2) as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF ((mono)MOF) for H(2) storage. After densification, this (mono)MOF stores 46 g L(–1) H(2) at 50 bar and 77 K and delivers 41 and 42 g L(–1) H(2) at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature–pressure (25–50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H(2) gas when compared with benchmark materials and an 83% reduction compared to compressed H(2) gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H(2) storage applications. American Chemical Society 2022-07-25 2022-08-03 /pmc/articles/PMC9354247/ /pubmed/35876689 http://dx.doi.org/10.1021/jacs.2c04608 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Madden, David Gerard O’Nolan, Daniel Rampal, Nakul Babu, Robin Çamur, Ceren Al Shakhs, Ali N. Zhang, Shi-Yuan Rance, Graham A. Perez, Javier Maria Casati, Nicola Pietro Cuadrado-Collados, Carlos O’Sullivan, Denis Rice, Nicholas P. Gennett, Thomas Parilla, Philip Shulda, Sarah Hurst, Katherine E. Stavila, Vitalie Allendorf, Mark D. Silvestre-Albero, Joaquin Forse, Alexander C. Champness, Neil R. Chapman, Karena W. Fairen-Jimenez, David Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity |
title | Densified HKUST-1
Monoliths as a Route to High
Volumetric and Gravimetric Hydrogen Storage Capacity |
title_full | Densified HKUST-1
Monoliths as a Route to High
Volumetric and Gravimetric Hydrogen Storage Capacity |
title_fullStr | Densified HKUST-1
Monoliths as a Route to High
Volumetric and Gravimetric Hydrogen Storage Capacity |
title_full_unstemmed | Densified HKUST-1
Monoliths as a Route to High
Volumetric and Gravimetric Hydrogen Storage Capacity |
title_short | Densified HKUST-1
Monoliths as a Route to High
Volumetric and Gravimetric Hydrogen Storage Capacity |
title_sort | densified hkust-1
monoliths as a route to high
volumetric and gravimetric hydrogen storage capacity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354247/ https://www.ncbi.nlm.nih.gov/pubmed/35876689 http://dx.doi.org/10.1021/jacs.2c04608 |
work_keys_str_mv | AT maddendavidgerard densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT onolandaniel densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT rampalnakul densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT baburobin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT camurceren densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT alshakhsalin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT zhangshiyuan densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT rancegrahama densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT perezjavier densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT mariacasatinicolapietro densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT cuadradocolladoscarlos densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT osullivandenis densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT ricenicholasp densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT gennettthomas densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT parillaphilip densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT shuldasarah densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT hurstkatherinee densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT stavilavitalie densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT allendorfmarkd densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT silvestrealberojoaquin densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT forsealexanderc densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT champnessneilr densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT chapmankarenaw densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity AT fairenjimenezdavid densifiedhkust1monolithsasaroutetohighvolumetricandgravimetrichydrogenstoragecapacity |