Cargando…
DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer
BACKGROUND: Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measureme...
Autores principales: | Chowdhury, Shrabanti, Wang, Ru, Yu, Qing, Huntoon, Catherine J., Karnitz, Larry M., Kaufmann, Scott H., Gygi, Steven P., Birrer, Michael J., Paulovich, Amanda G., Peng, Jie, Wang, Pei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354326/ https://www.ncbi.nlm.nih.gov/pubmed/35931981 http://dx.doi.org/10.1186/s12859-022-04864-y |
Ejemplares similares
-
Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer
por: Huang, Dongqing, et al.
Publicado: (2021) -
Acyclic Matching in Some Subclasses of Graphs
por: Panda, B. S., et al.
Publicado: (2020) -
A directed acyclic graph for interactions
por: Nilsson, Anton, et al.
Publicado: (2020) -
RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network
por: Geng, Liyi, et al.
Publicado: (2010) -
Reducing bias through directed acyclic graphs
por: Shrier, Ian, et al.
Publicado: (2008)