Cargando…
A novel approach for COVID-19 Infection forecasting based on multi-source deep transfer learning
COVID-19 is a contagious disease; so, predicting its future infections in a provincial region requires the consideration of the related data (i.e., rates of infection, mortality and recovery, etc.) over a period of time. Clearly, the COVID-19 data of a particular provincial region can be easily mode...
Autores principales: | Garg, Sonakshi, Kumar, Sandeep, Muhuri, Pranab K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354391/ https://www.ncbi.nlm.nih.gov/pubmed/36063688 http://dx.doi.org/10.1016/j.compbiomed.2022.105915 |
Ejemplares similares
-
Deep autoencoder based domain adaptation for transfer learning
por: Dev, Krishna, et al.
Publicado: (2022) -
Multi-step rainfall forecasting using deep learning approach
por: Narejo, Sanam, et al.
Publicado: (2021) -
Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series
por: Sagheer, Alaa, et al.
Publicado: (2021) -
A novel bidirectional LSTM deep learning approach for COVID-19 forecasting
por: Aung, Nway Nway, et al.
Publicado: (2023) -
Weather and population based forecasting of novel COVID-19 using deep learning approaches
por: Ronald Doni, A., et al.
Publicado: (2021)