Cargando…
Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk
BACKGROUND: With the rapid accumulation of microbiome-wide association studies, a great amount of microbiome data are available to study the microbiome’s role in human disease and advance the microbiome’s potential use for disease prediction. However, the unique features of microbiome data hinder it...
Autores principales: | Wang, Chan, Segal, Leopoldo N., Hu, Jiyuan, Zhou, Boyan, Hayes, Richard B., Ahn, Jiyoung, Li, Huilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354433/ https://www.ncbi.nlm.nih.gov/pubmed/35932029 http://dx.doi.org/10.1186/s40168-022-01310-2 |
Ejemplares similares
-
Microbial Risk Score for Capturing Microbial Characteristics, Integrating Multi-omics Data, and Predicting Disease Risk
por: Wang, Chan, et al.
Publicado: (2022) -
A microbial causal mediation analytic tool for health disparity and applications in body mass index
por: Wang, Chan, et al.
Publicado: (2023) -
Microbial trend analysis for common dynamic trend, group comparison, and classification in longitudinal microbiome study
por: Wang, Chan, et al.
Publicado: (2021) -
A two-stage microbial association mapping framework with advanced FDR control
por: Hu, Jiyuan, et al.
Publicado: (2018) -
Hybridization capture reveals microbial diversity missed using current profiling methods
por: Gasc, Cyrielle, et al.
Publicado: (2018)