Cargando…
The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China
OBJECTIVE: This cross-sectional research aims to develop reliable predictive short-term prediction models to predict the number of RTIs in Northeast China through comparative studies. METHODOLOGY: Seasonal auto-regressive integrated moving average (SARIMA), Long Short-Term Memory (LSTM), and Faceboo...
Autores principales: | Feng, Tianyu, Zheng, Zhou, Xu, Jiaying, Liu, Minghui, Li, Ming, Jia, Huanhuan, Yu, Xihe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354624/ https://www.ncbi.nlm.nih.gov/pubmed/35937210 http://dx.doi.org/10.3389/fpubh.2022.946563 |
Ejemplares similares
-
A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China
por: Luo, Zixiao, et al.
Publicado: (2022) -
Analysis of multimorbidity networks associated with different factors in Northeast China: a cross-sectional analysis
por: Yu, Jianxing, et al.
Publicado: (2021) -
Forecasting Time Series Data with Facebook Prophet
por: Rafferty, Greg
Publicado: (2021) -
Analysis on alteration of road traffic casualties in western China from multi-department data in recent decade
por: Qiu, Jinlong, et al.
Publicado: (2022) -
Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China
por: Zhao, Zhiyang, et al.
Publicado: (2023)