Cargando…
Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints
Yields of wheat crops that succeed rice paddy crops are generally low. To date, it has been unclear whether such low yields were due to rice paddies altering soil physical or mineral characteristics, or both. To investigate this quandary, we conducted field experiments in the Jianghan Plain to analy...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354814/ https://www.ncbi.nlm.nih.gov/pubmed/35937355 http://dx.doi.org/10.3389/fpls.2022.959784 |
_version_ | 1784763154072338432 |
---|---|
author | Yang, Rui Wang, Zhuangzhi Fahad, Shah Geng, Shiying Zhang, Chengxiang Harrison, Matthew Tom Adnan, Muhammad Saud, Shah Zhou, Meixue Liu, Ke Wang, Xiaoyan |
author_facet | Yang, Rui Wang, Zhuangzhi Fahad, Shah Geng, Shiying Zhang, Chengxiang Harrison, Matthew Tom Adnan, Muhammad Saud, Shah Zhou, Meixue Liu, Ke Wang, Xiaoyan |
author_sort | Yang, Rui |
collection | PubMed |
description | Yields of wheat crops that succeed rice paddy crops are generally low. To date, it has been unclear whether such low yields were due to rice paddies altering soil physical or mineral characteristics, or both. To investigate this quandary, we conducted field experiments in the Jianghan Plain to analyze differences in the spatial distribution of wheat roots between rice-wheat rotation (RW) and dryland-wheat rotations (DW) using a range of nitrogen treatments. Dryland wheat crops were preceded by either dryland soybean or corn in the prior summer. Biomass of wheat crops in RW systems was significantly lower than that of DW for all N fertilizer treatments, although optimal nitrogen management resulted in comparable wheat yields in both DW and RW. Soil saturated water capacity and non-capillary porosity were higher in DW than RW, whereas soil bulk density was higher in RW. Soil available nitrogen and organic matter were higher in DW than RW irrespective of N application, while soil available P and K were higher under RW both at anthesis and post-harvest stages. At anthesis, root length percentage (RLP) was more concentrated in surface layers (0–20 cm) in RW, whereas at 20–40 cm and 40–60 cm, RLP was higher in DW than RW for all N treatments. At maturity, RLP were ranked 0–20 > 20–40 > 40–60 cm under both cropping systems irrespective of N fertilization. Root length percentage and soil chemical properties at 0–20 cm were positively correlated (r = 0.79 at anthesis, r = 0.68 at post-harvest) with soil available P, while available N (r = −0.59) and soil organic matter (r = −0.39) were negatively correlated with RLP at anthesis. Nitrogen applied at 180 kg ha(−1) in three unform amounts of 60 kg N ha(−1) at sowing, wintering and jointing resulted in higher yields than other treatments for both cropping systems. Overall, our results suggest that flooding of rice paddies increased bulk density and reduced available nitrogen, inhibiting the growth and yield of subsequent wheat crops relative to rainfed corn or soybean crops. |
format | Online Article Text |
id | pubmed-9354814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93548142022-08-06 Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints Yang, Rui Wang, Zhuangzhi Fahad, Shah Geng, Shiying Zhang, Chengxiang Harrison, Matthew Tom Adnan, Muhammad Saud, Shah Zhou, Meixue Liu, Ke Wang, Xiaoyan Front Plant Sci Plant Science Yields of wheat crops that succeed rice paddy crops are generally low. To date, it has been unclear whether such low yields were due to rice paddies altering soil physical or mineral characteristics, or both. To investigate this quandary, we conducted field experiments in the Jianghan Plain to analyze differences in the spatial distribution of wheat roots between rice-wheat rotation (RW) and dryland-wheat rotations (DW) using a range of nitrogen treatments. Dryland wheat crops were preceded by either dryland soybean or corn in the prior summer. Biomass of wheat crops in RW systems was significantly lower than that of DW for all N fertilizer treatments, although optimal nitrogen management resulted in comparable wheat yields in both DW and RW. Soil saturated water capacity and non-capillary porosity were higher in DW than RW, whereas soil bulk density was higher in RW. Soil available nitrogen and organic matter were higher in DW than RW irrespective of N application, while soil available P and K were higher under RW both at anthesis and post-harvest stages. At anthesis, root length percentage (RLP) was more concentrated in surface layers (0–20 cm) in RW, whereas at 20–40 cm and 40–60 cm, RLP was higher in DW than RW for all N treatments. At maturity, RLP were ranked 0–20 > 20–40 > 40–60 cm under both cropping systems irrespective of N fertilization. Root length percentage and soil chemical properties at 0–20 cm were positively correlated (r = 0.79 at anthesis, r = 0.68 at post-harvest) with soil available P, while available N (r = −0.59) and soil organic matter (r = −0.39) were negatively correlated with RLP at anthesis. Nitrogen applied at 180 kg ha(−1) in three unform amounts of 60 kg N ha(−1) at sowing, wintering and jointing resulted in higher yields than other treatments for both cropping systems. Overall, our results suggest that flooding of rice paddies increased bulk density and reduced available nitrogen, inhibiting the growth and yield of subsequent wheat crops relative to rainfed corn or soybean crops. Frontiers Media S.A. 2022-07-22 /pmc/articles/PMC9354814/ /pubmed/35937355 http://dx.doi.org/10.3389/fpls.2022.959784 Text en Copyright © 2022 Yang, Wang, Fahad, Geng, Zhang, Harrison, Adnan, Saud, Zhou, Liu and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Yang, Rui Wang, Zhuangzhi Fahad, Shah Geng, Shiying Zhang, Chengxiang Harrison, Matthew Tom Adnan, Muhammad Saud, Shah Zhou, Meixue Liu, Ke Wang, Xiaoyan Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title | Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title_full | Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title_fullStr | Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title_full_unstemmed | Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title_short | Rice Paddies Reduce Subsequent Yields of Wheat Due to Physical and Chemical Soil Constraints |
title_sort | rice paddies reduce subsequent yields of wheat due to physical and chemical soil constraints |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354814/ https://www.ncbi.nlm.nih.gov/pubmed/35937355 http://dx.doi.org/10.3389/fpls.2022.959784 |
work_keys_str_mv | AT yangrui ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT wangzhuangzhi ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT fahadshah ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT gengshiying ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT zhangchengxiang ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT harrisonmatthewtom ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT adnanmuhammad ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT saudshah ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT zhoumeixue ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT liuke ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints AT wangxiaoyan ricepaddiesreducesubsequentyieldsofwheatduetophysicalandchemicalsoilconstraints |