Cargando…
Application of ion mobility spectrometry for the determination of tramadol in biological samples
In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taiwan Food and Drug Administration
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355003/ https://www.ncbi.nlm.nih.gov/pubmed/28911466 http://dx.doi.org/10.1016/j.jfda.2014.02.001 |
Sumario: | In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs). Under optimum conditions, the calibration curves were linear within two orders of magnitude with R(2) ≥ 0.998 for the determination of tramadol in human plasma, saliva, serum, and urine samples. The limits of detection and the limits of quantitation were between 0.1 and 0.3 and 0.3 and 1 ng/mL, respectively. The relative standard deviations were between 7.5 and 8.8%. The recovery results (90–103.9%) indicate that the proposed method can be applied for tramadol analysis in different biological samples. |
---|