Cargando…

Oxidative Stress-Induced Protein of SESTRIN2 in Cardioprotection Effect

Because of the rich mitochondria and high energy metabolic requirements, excessive oxidative stress generated by ROS is a key pathogenic mechanism in heart disease. SESTRIN2, the well-known antioxidant protein, plays a vital role in diminishing the production and accumulation of ROS, thus sparing ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Rongjin, Huang, Feng, Chen, Jun, Ke, Shirong, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355779/
https://www.ncbi.nlm.nih.gov/pubmed/35937943
http://dx.doi.org/10.1155/2022/7439878
Descripción
Sumario:Because of the rich mitochondria and high energy metabolic requirements, excessive oxidative stress generated by ROS is a key pathogenic mechanism in heart disease. SESTRIN2, the well-known antioxidant protein, plays a vital role in diminishing the production and accumulation of ROS, thus sparing cells from oxidative damage. From this new perspective, we first examine SESTRIN2 structure-function relationships; then, we describe how SESTRIN2 expression is regulated under oxidative stress conditions, emphasizing SESTRIN2's antioxidant mechanism via multiple signal transductions; and finally, we discuss SESTRIN2's role in a variety of oxidative stress-related cardiac diseases, including age-related heart disease, diabetic cardiomyopathy, ischemia-reperfusion myocardial injury, septic cardiomyopathy, and chronic cardiac insufficiency. The goal of this review is to identify the SESTRIN2 protein as a potential biomarker and new therapy target for oxidative stress-related cardiac diseases.