Cargando…
3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography
The orderly arrangement of nanomaterials’ tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355982/ https://www.ncbi.nlm.nih.gov/pubmed/35931721 http://dx.doi.org/10.1038/s41467-022-32317-w |
Sumario: | The orderly arrangement of nanomaterials’ tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect for various novel applications. In this paper, we developed a sacrificial-scaffold-mediated two-photon lithography (TPL) strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly-arranged nanoparticles inside. We show that, with the help of a degradable hydrogel scaffold, the disturbance effect of the femtosecond laser to the nanoparticle self-assembling could be overcome. Therefore, hydrogel-state and solid-state colloidal crystal microstructures with diverse compositions, free-designed geometries and variable structural colors could be easily fabricated. This enables the possibility to create novel colloidal crystal microsensing systems that have not been achieved before. |
---|