Cargando…
Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease
Understanding Alzheimer’s disease (AD) heterogeneity is important for understanding the underlying pathophysiological mechanisms of AD. However, AD atrophy subtypes may reflect different disease stages or biologically distinct subtypes. Here we use longitudinal magnetic resonance imaging data (891 p...
Autores principales: | Poulakis, Konstantinos, Pereira, Joana B., Muehlboeck, J.-Sebastian, Wahlund, Lars-Olof, Smedby, Örjan, Volpe, Giovanni, Masters, Colin L., Ames, David, Niimi, Yoshiki, Iwatsubo, Takeshi, Ferreira, Daniel, Westman, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355993/ https://www.ncbi.nlm.nih.gov/pubmed/35931678 http://dx.doi.org/10.1038/s41467-022-32202-6 |
Ejemplares similares
-
Fully bayesian longitudinal unsupervised learning for the assessment and visualization of AD heterogeneity and progression
por: Poulakis, Konstantinos, et al.
Publicado: (2020) -
Clustering and disease subtyping in Neuroscience, toward better methodological adaptations
por: Poulakis, Konstantinos, et al.
Publicado: (2023) -
Comparison of subtyping methods for neuroimaging studies in Alzheimer’s disease: a call for harmonization
por: Mohanty, Rosaleena, et al.
Publicado: (2020) -
Shape Information Improves the Cross-Cohort Performance of Deep Learning-Based Segmentation of the Hippocampus
por: Brusini, Irene, et al.
Publicado: (2020) -
Distinct subtypes of Alzheimer’s disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications
por: Ferreira, Daniel, et al.
Publicado: (2017)