Cargando…
Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy
Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be...
Autores principales: | Ihara, Shiro, Saito, Hikaru, Yoshinaga, Mizumo, Avala, Lavakumar, Murayama, Mitsuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356044/ https://www.ncbi.nlm.nih.gov/pubmed/35931705 http://dx.doi.org/10.1038/s41598-022-17360-3 |
Ejemplares similares
-
Five-second STEM dislocation tomography for 300 nm thick specimen assisted by deep-learning-based noise filtering
por: Zhao, Yifang, et al.
Publicado: (2021) -
Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images
por: Wang, Feng, et al.
Publicado: (2020) -
Dynamics in the O(2 × 1) adlayer on Ru(0001): bridging timescales from milliseconds to minutes by scanning tunneling microscopy
por: Gura, Leonard, et al.
Publicado: (2022) -
Vacuum cleaving of superconducting niobium tips to optimize noise filtering and with adjustable gap size for scanning tunneling microscopy
por: Marques, Carolina A., et al.
Publicado: (2023) -
Partial Scanning Transmission Electron Microscopy with Deep Learning
por: Ede, Jeffrey M., et al.
Publicado: (2020)