Cargando…
Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U...
Autores principales: | Jeoun, Bo-Soung, Yang, Su, Lee, Sang-Jeong, Kim, Tae-Il, Kim, Jun-Min, Kim, Jo-Eun, Huh, Kyung-Hoe, Lee, Sam-Sun, Heo, Min-Suk, Yi, Won-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356068/ https://www.ncbi.nlm.nih.gov/pubmed/35931733 http://dx.doi.org/10.1038/s41598-022-17341-6 |
Ejemplares similares
-
Author Correction: Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
por: Jeoun, Bo-Soung, et al.
Publicado: (2022) -
Automatic classification of 3D positional relationship between mandibular third molar and inferior alveolar canal using a distance-aware network
por: Chun, So-Young, et al.
Publicado: (2023) -
Visibility of the mandibular canal on CBCT cross-sectional
images
por: OLIVEIRA-SANTOS, Christiano, et al.
Publicado: (2011) -
Evaluation of Distolingual Canal/Roots in Mandibular Molars and Mesiobuccal Canals in Maxillary Molars by CBCT
por: Pekiner, Filiz Namdar, et al.
Publicado: (2017) -
Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans
por: Usman, Muhammad, et al.
Publicado: (2022)