Cargando…

Predicting outcome of patients with prolonged disorders of consciousness using machine learning models based on medical complexity

Patients with severe acquired brain injury and prolonged disorders of consciousness (pDoC) are characterized by high clinical complexity and high risk to develop medical complications. The present multi-center longitudinal study aimed at investigating the impact of medical complications on the predi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liuzzi, Piergiuseppe, Magliacano, Alfonso, De Bellis, Francesco, Mannini, Andrea, Estraneo, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356130/
https://www.ncbi.nlm.nih.gov/pubmed/35931703
http://dx.doi.org/10.1038/s41598-022-17561-w
Descripción
Sumario:Patients with severe acquired brain injury and prolonged disorders of consciousness (pDoC) are characterized by high clinical complexity and high risk to develop medical complications. The present multi-center longitudinal study aimed at investigating the impact of medical complications on the prediction of clinical outcome by means of machine learning models. Patients with pDoC were consecutively enrolled at admission in 23 intensive neurorehabilitation units (IRU) and followed-up at 6 months from onset via the Glasgow Outcome Scale—Extended (GOSE). Demographic and clinical data at study entry and medical complications developed within 3 months from admission were collected. Machine learning models were developed, targeting neurological outcomes at 6 months from brain injury using data collected at admission. Then, after concatenating predictions of such models to the medical complications collected within 3 months, a cascade model was developed. One hundred seventy six patients with pDoC (M: 123, median age 60.2 years) were included in the analysis. At admission, the best performing solution (k-Nearest Neighbors regression, KNN) resulted in a median validation error of 0.59 points [IQR 0.14] and a classification accuracy of dichotomized GOS-E of 88.6%. Coherently, at 3 months, the best model resulted in a median validation error of 0.49 points [IQR 0.11] and a classification accuracy of 92.6%. Interpreting the admission KNN showed how the negative effect of older age is strengthened when patients’ communication levels are high and ameliorated when no communication is present. The model trained at 3 months showed appropriate adaptation of the admission prediction according to the severity of the developed medical complexity in the first 3 months. In this work, we developed and cross-validated an interpretable decision support tool capable of distinguishing patients which will reach sufficient independence levels at 6 months (GOS-E > 4). Furthermore, we provide an updated prediction at 3 months, keeping in consideration the rehabilitative path and the risen medical complexity.