Cargando…
Predicting outcome of patients with prolonged disorders of consciousness using machine learning models based on medical complexity
Patients with severe acquired brain injury and prolonged disorders of consciousness (pDoC) are characterized by high clinical complexity and high risk to develop medical complications. The present multi-center longitudinal study aimed at investigating the impact of medical complications on the predi...
Autores principales: | Liuzzi, Piergiuseppe, Magliacano, Alfonso, De Bellis, Francesco, Mannini, Andrea, Estraneo, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356130/ https://www.ncbi.nlm.nih.gov/pubmed/35931703 http://dx.doi.org/10.1038/s41598-022-17561-w |
Ejemplares similares
-
Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index
por: Magliacano, Alfonso, et al.
Publicado: (2022) -
Spontaneous eye blinking as a diagnostic marker in prolonged disorders of consciousness
por: Magliacano, Alfonso, et al.
Publicado: (2021) -
Can Respiration Complexity Help the Diagnosis of Disorders of Consciousness in Rehabilitation?
por: Liuzzi, Piergiuseppe, et al.
Publicado: (2023) -
Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
Neural coding of autonomic functions in different states of consciousness
por: Liuzzi, Piergiuseppe, et al.
Publicado: (2023)