Cargando…
“Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
The Dothideomycete Leptosphaeria maculans, causing stem canker (blackleg) of Brassica napus, secretes different cocktails of effectors at specific infection stages. Some effectors (“Late” effectors) are specifically produced during the long asymptomatic phase of stem colonization. By manipulating th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356234/ https://www.ncbi.nlm.nih.gov/pubmed/35949954 http://dx.doi.org/10.1002/pld3.435 |
_version_ | 1784763472651747328 |
---|---|
author | Jiquel, Audren Gay, Elise J. Mas, Justine George, Pierre Wagner, Armand Fior, Adrien Faure, Sébastien Balesdent, Marie‐Hélène Rouxel, Thierry |
author_facet | Jiquel, Audren Gay, Elise J. Mas, Justine George, Pierre Wagner, Armand Fior, Adrien Faure, Sébastien Balesdent, Marie‐Hélène Rouxel, Thierry |
author_sort | Jiquel, Audren |
collection | PubMed |
description | The Dothideomycete Leptosphaeria maculans, causing stem canker (blackleg) of Brassica napus, secretes different cocktails of effectors at specific infection stages. Some effectors (“Late” effectors) are specifically produced during the long asymptomatic phase of stem colonization. By manipulating their expression so that they are overexpressed during cotyledon infection (OEC transformants of the fungus), we previously postulated that resistance genes operating in the stem may be involved in gene‐for‐gene relationship and thus contribute to quantitative disease resistance (QDR). Here, we selected 10 relevant new effector genes, and we generated OEC transformants to screen a collection of 130 B. napus genotypes, representative of the available diversity in the species. Five B. napus accessions showed a typical hypersensitive response when challenged with effectors LmSTEE98 or LmSTEE6826 at the cotyledon stage, and all belong to the semi‐winter type of the diversity panel. In addition, five winter‐type genotypes displayed an intermediate response to another late effector, LmSTEE7919. These new interactions now have to be genetically validated to check that they also correspond to gene‐for‐gene interactions. In all cases, they potentially provide novel resources, easy to breed for, and accounting for part of the quantitative resistance in a species for which we are currently facing limited resistance sources. |
format | Online Article Text |
id | pubmed-9356234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93562342022-08-09 “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus Jiquel, Audren Gay, Elise J. Mas, Justine George, Pierre Wagner, Armand Fior, Adrien Faure, Sébastien Balesdent, Marie‐Hélène Rouxel, Thierry Plant Direct Original Research The Dothideomycete Leptosphaeria maculans, causing stem canker (blackleg) of Brassica napus, secretes different cocktails of effectors at specific infection stages. Some effectors (“Late” effectors) are specifically produced during the long asymptomatic phase of stem colonization. By manipulating their expression so that they are overexpressed during cotyledon infection (OEC transformants of the fungus), we previously postulated that resistance genes operating in the stem may be involved in gene‐for‐gene relationship and thus contribute to quantitative disease resistance (QDR). Here, we selected 10 relevant new effector genes, and we generated OEC transformants to screen a collection of 130 B. napus genotypes, representative of the available diversity in the species. Five B. napus accessions showed a typical hypersensitive response when challenged with effectors LmSTEE98 or LmSTEE6826 at the cotyledon stage, and all belong to the semi‐winter type of the diversity panel. In addition, five winter‐type genotypes displayed an intermediate response to another late effector, LmSTEE7919. These new interactions now have to be genetically validated to check that they also correspond to gene‐for‐gene interactions. In all cases, they potentially provide novel resources, easy to breed for, and accounting for part of the quantitative resistance in a species for which we are currently facing limited resistance sources. John Wiley and Sons Inc. 2022-08-05 /pmc/articles/PMC9356234/ /pubmed/35949954 http://dx.doi.org/10.1002/pld3.435 Text en © 2022 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Jiquel, Audren Gay, Elise J. Mas, Justine George, Pierre Wagner, Armand Fior, Adrien Faure, Sébastien Balesdent, Marie‐Hélène Rouxel, Thierry “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus |
title | “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
|
title_full | “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
|
title_fullStr | “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
|
title_full_unstemmed | “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
|
title_short | “Late” effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus
|
title_sort | “late” effectors from leptosphaeria maculans as tools for identifying novel sources of resistance in brassica napus |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356234/ https://www.ncbi.nlm.nih.gov/pubmed/35949954 http://dx.doi.org/10.1002/pld3.435 |
work_keys_str_mv | AT jiquelaudren lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT gayelisej lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT masjustine lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT georgepierre lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT wagnerarmand lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT fioradrien lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT fauresebastien lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT balesdentmariehelene lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus AT rouxelthierry lateeffectorsfromleptosphaeriamaculansastoolsforidentifyingnovelsourcesofresistanceinbrassicanapus |