Cargando…
CRANet: a comprehensive residual attention network for intracranial aneurysm image classification
Rupture of intracranial aneurysm is the first cause of subarachnoid hemorrhage, second only to cerebral thrombosis and hypertensive cerebral hemorrhage, and the mortality rate is very high. MRI technology plays an irreplaceable role in the early detection and diagnosis of intracranial aneurysms and...
Autores principales: | Zhao, Yawu, Wang, Shudong, Ren, Yande, Zhang, Yulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356401/ https://www.ncbi.nlm.nih.gov/pubmed/35931949 http://dx.doi.org/10.1186/s12859-022-04872-y |
Ejemplares similares
-
WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
por: Zhao, Yawu, et al.
Publicado: (2023) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Attentional Mechanisms and Improved Residual Networks for Diabetic Retinopathy Severity Classification
por: Cao, Juan, et al.
Publicado: (2022) -
Classification of Pathological Types of Lung Cancer from CT Images by Deep Residual Neural Networks with Transfer Learning Strategy
por: Wang, Shudong, et al.
Publicado: (2020)