Cargando…
Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC
BACKGROUND: High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramaticall...
Autores principales: | Padovani, Francesco, Mairhörmann, Benedikt, Falter-Braun, Pascal, Lengefeld, Jette, Schmoller, Kurt M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356409/ https://www.ncbi.nlm.nih.gov/pubmed/35932043 http://dx.doi.org/10.1186/s12915-022-01372-6 |
Ejemplares similares
-
acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
por: Lux, Markus, et al.
Publicado: (2016) -
New software for automated cilia detection in cells (ACDC)
por: Lauring, Max C., et al.
Publicado: (2019) -
ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy
por: Rundo, Leonardo, et al.
Publicado: (2020) -
The Cell Cycle Ontology: an application ontology for the representation and integrated analysis of the cell cycle process
por: Antezana, Erick, et al.
Publicado: (2009) -
Copynumber: Efficient algorithms for single- and multi-track copy number segmentation
por: Nilsen, Gro, et al.
Publicado: (2012)