Cargando…

Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study

BACKGROUND: The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Smit, J.M., Krijthe, J.H., Endeman, H., Tintu, A.N., de Rijke, Y.B., Gommers, D.A.M.P.J., Cremer, O.L., Bosman, R.J., Rigter, S., Wils, E.-J., Frenzel, T., Dongelmans, D.A., De Jong, R., Peters, M.A.A., Kamps, M.J.A., Ramnarain, D., Nowitzky, R., Nooteboom, F.G.C.A., De Ruijter, W., Urlings-Strop, L.C., Smit, E.G.M., Mehagnoul-Schipper, D.J., Dormans, T., De Jager, C.P.C., Hendriks, S.H.A., Achterberg, S., Oostdijk, E., Reidinga, A.C., Festen-Spanjer, B., Brunnekreef, G.B., Cornet, A.D., Van den Tempel, W., Boelens, A.D., Koetsier, P., Lens, J.A., Faber, H.J., karakus, A., Entjes, R., De Jong, P., Rettig, T.C.D., Arbous, M.S., Lalisang, R.C.A., Tonutti, M., De Bruin, D.P., Elbers, P.W.G., Van Bommel, J., Reinders, M.J.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356569/
https://www.ncbi.nlm.nih.gov/pubmed/35958674
http://dx.doi.org/10.1016/j.ibmed.2022.100071
_version_ 1784763547314552832
author Smit, J.M.
Krijthe, J.H.
Endeman, H.
Tintu, A.N.
de Rijke, Y.B.
Gommers, D.A.M.P.J.
Cremer, O.L.
Bosman, R.J.
Rigter, S.
Wils, E.-J.
Frenzel, T.
Dongelmans, D.A.
De Jong, R.
Peters, M.A.A.
Kamps, M.J.A.
Ramnarain, D.
Nowitzky, R.
Nooteboom, F.G.C.A.
De Ruijter, W.
Urlings-Strop, L.C.
Smit, E.G.M.
Mehagnoul-Schipper, D.J.
Dormans, T.
De Jager, C.P.C.
Hendriks, S.H.A.
Achterberg, S.
Oostdijk, E.
Reidinga, A.C.
Festen-Spanjer, B.
Brunnekreef, G.B.
Cornet, A.D.
Van den Tempel, W.
Boelens, A.D.
Koetsier, P.
Lens, J.A.
Faber, H.J.
karakus, A.
Entjes, R.
De Jong, P.
Rettig, T.C.D.
Arbous, M.S.
Lalisang, R.C.A.
Tonutti, M.
De Bruin, D.P.
Elbers, P.W.G.
Van Bommel, J.
Reinders, M.J.T.
author_facet Smit, J.M.
Krijthe, J.H.
Endeman, H.
Tintu, A.N.
de Rijke, Y.B.
Gommers, D.A.M.P.J.
Cremer, O.L.
Bosman, R.J.
Rigter, S.
Wils, E.-J.
Frenzel, T.
Dongelmans, D.A.
De Jong, R.
Peters, M.A.A.
Kamps, M.J.A.
Ramnarain, D.
Nowitzky, R.
Nooteboom, F.G.C.A.
De Ruijter, W.
Urlings-Strop, L.C.
Smit, E.G.M.
Mehagnoul-Schipper, D.J.
Dormans, T.
De Jager, C.P.C.
Hendriks, S.H.A.
Achterberg, S.
Oostdijk, E.
Reidinga, A.C.
Festen-Spanjer, B.
Brunnekreef, G.B.
Cornet, A.D.
Van den Tempel, W.
Boelens, A.D.
Koetsier, P.
Lens, J.A.
Faber, H.J.
karakus, A.
Entjes, R.
De Jong, P.
Rettig, T.C.D.
Arbous, M.S.
Lalisang, R.C.A.
Tonutti, M.
De Bruin, D.P.
Elbers, P.W.G.
Van Bommel, J.
Reinders, M.J.T.
author_sort Smit, J.M.
collection PubMed
description BACKGROUND: The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. METHODS: We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. RESULTS: The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. DISCUSSION: We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research.
format Online
Article
Text
id pubmed-9356569
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Authors. Published by Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-93565692022-08-07 Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study Smit, J.M. Krijthe, J.H. Endeman, H. Tintu, A.N. de Rijke, Y.B. Gommers, D.A.M.P.J. Cremer, O.L. Bosman, R.J. Rigter, S. Wils, E.-J. Frenzel, T. Dongelmans, D.A. De Jong, R. Peters, M.A.A. Kamps, M.J.A. Ramnarain, D. Nowitzky, R. Nooteboom, F.G.C.A. De Ruijter, W. Urlings-Strop, L.C. Smit, E.G.M. Mehagnoul-Schipper, D.J. Dormans, T. De Jager, C.P.C. Hendriks, S.H.A. Achterberg, S. Oostdijk, E. Reidinga, A.C. Festen-Spanjer, B. Brunnekreef, G.B. Cornet, A.D. Van den Tempel, W. Boelens, A.D. Koetsier, P. Lens, J.A. Faber, H.J. karakus, A. Entjes, R. De Jong, P. Rettig, T.C.D. Arbous, M.S. Lalisang, R.C.A. Tonutti, M. De Bruin, D.P. Elbers, P.W.G. Van Bommel, J. Reinders, M.J.T. Intell Based Med Article BACKGROUND: The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. METHODS: We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. RESULTS: The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. DISCUSSION: We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research. The Authors. Published by Elsevier B.V. 2022 2022-08-06 /pmc/articles/PMC9356569/ /pubmed/35958674 http://dx.doi.org/10.1016/j.ibmed.2022.100071 Text en © 2022 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Smit, J.M.
Krijthe, J.H.
Endeman, H.
Tintu, A.N.
de Rijke, Y.B.
Gommers, D.A.M.P.J.
Cremer, O.L.
Bosman, R.J.
Rigter, S.
Wils, E.-J.
Frenzel, T.
Dongelmans, D.A.
De Jong, R.
Peters, M.A.A.
Kamps, M.J.A.
Ramnarain, D.
Nowitzky, R.
Nooteboom, F.G.C.A.
De Ruijter, W.
Urlings-Strop, L.C.
Smit, E.G.M.
Mehagnoul-Schipper, D.J.
Dormans, T.
De Jager, C.P.C.
Hendriks, S.H.A.
Achterberg, S.
Oostdijk, E.
Reidinga, A.C.
Festen-Spanjer, B.
Brunnekreef, G.B.
Cornet, A.D.
Van den Tempel, W.
Boelens, A.D.
Koetsier, P.
Lens, J.A.
Faber, H.J.
karakus, A.
Entjes, R.
De Jong, P.
Rettig, T.C.D.
Arbous, M.S.
Lalisang, R.C.A.
Tonutti, M.
De Bruin, D.P.
Elbers, P.W.G.
Van Bommel, J.
Reinders, M.J.T.
Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title_full Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title_fullStr Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title_full_unstemmed Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title_short Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
title_sort dynamic prediction of mortality in covid-19 patients in the intensive care unit: a retrospective multi-center cohort study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356569/
https://www.ncbi.nlm.nih.gov/pubmed/35958674
http://dx.doi.org/10.1016/j.ibmed.2022.100071
work_keys_str_mv AT smitjm dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT krijthejh dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT endemanh dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT tintuan dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT derijkeyb dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT gommersdampj dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT cremerol dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT bosmanrj dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT rigters dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT wilsej dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT frenzelt dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT dongelmansda dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT dejongr dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT petersmaa dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT kampsmja dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT ramnaraind dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT nowitzkyr dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT nooteboomfgca dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT deruijterw dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT urlingsstroplc dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT smitegm dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT mehagnoulschipperdj dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT dormanst dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT dejagercpc dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT hendrikssha dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT achterbergs dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT oostdijke dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT reidingaac dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT festenspanjerb dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT brunnekreefgb dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT cornetad dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT vandentempelw dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT boelensad dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT koetsierp dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT lensja dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT faberhj dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT karakusa dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT entjesr dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT dejongp dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT rettigtcd dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT arbousms dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT lalisangrca dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT tonuttim dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT debruindp dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT elberspwg dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT vanbommelj dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy
AT reindersmjt dynamicpredictionofmortalityincovid19patientsintheintensivecareunitaretrospectivemulticentercohortstudy