Cargando…

Succinimide Derivatives as Antioxidant Anticholinesterases, Anti-α-Amylase, and Anti-α-Glucosidase: In Vitro and In Silico Approaches

Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities...

Descripción completa

Detalles Bibliográficos
Autores principales: Alshehri, Osama M., Mahnashi, Mater H., Sadiq, Abdul, Zafar, Rehman, Jan, Muhammad Saeed, Ullah, Farhat, Alshehri, Mohammed Ali, Alshamrani, Saleh, Hassan, Elhashimi E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356783/
https://www.ncbi.nlm.nih.gov/pubmed/35942378
http://dx.doi.org/10.1155/2022/6726438
Descripción
Sumario:Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC(50) value of 32 and 28.04 μM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC(50) values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC(50) values 7.32 and 3.29 μM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.