Cargando…

Gait Recognition Based on the Plantar Pressure Data of Ice and Snow Athletes

The study of plantar pressure has become a research consensus in the field of biomechanics. The purpose of this paper is to study some lower limb movements in the daily activities of ice and snow athletes to obtain relevant data so as to carry out gait recognition analysis research. This paper selec...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fengyu, Li, Xingyang, Zhao, Wenyan, Ning, Bowen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356817/
https://www.ncbi.nlm.nih.gov/pubmed/35942464
http://dx.doi.org/10.1155/2022/2982894
Descripción
Sumario:The study of plantar pressure has become a research consensus in the field of biomechanics. The purpose of this paper is to study some lower limb movements in the daily activities of ice and snow athletes to obtain relevant data so as to carry out gait recognition analysis research. This paper selects the average foot pressure, forefoot foot pressure, front and rear foot pressure, foot pressure, toe pressure, 2–5 toe pressure, standing with eyes closed, x- and y-axes speed, foot length, foot width, and other actions of ice and snow athletes. Therefore, correlation analysis, work analysis, and curve fitting analysis were carried out on the joint motion in a single gait cycle. The collection and application of foot pressure and foot posture information are also analyzed. According to the plantar structure, the sole is divided into four parts. The maximum pressure point and coordinates of each part, the pressure center point, the ratio of the width and height of the sole of the foot, and so on are extracted as the haptic features of the gait. The experimental data shows that it can be seen that if the plantar area is divided in advance and the weight of each area is marked, whether standing, walking, or standing with one leg closed eyes can achieve better recognition results, and the accuracy rate is all more than 90 percent. The average recognition accuracy rate using the method of dividing four regions is only about 80%, and the accuracy rate of recognition using the method of dividing eight regions is 82%. It can be seen that the features extracted by the FCM model proposed in this paper contain more information of the plantar pressure image, and the accuracy rate is higher in the classification and recognition.